Home
Class 12
MATHS
int (x^2-2)/(x^3 sqrt(x^2-1)) dx is equa...

`int (x^2-2)/(x^3 sqrt(x^2-1)) dx` is equal to

A

`(x^(2))/(sqrt(x^(2)-1))+C`

B

`-(x^(2))/(sqrt(x^(2)-1))+C`

C

`(sqrt(x^(2)-1))/(x^(2))+C`

D

`-(sqrt(x^(2)-1))/(x^(2))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{x^2 - 2}{x^3 \sqrt{x^2 - 1}} \, dx, \] we can start by rewriting the integrand. Notice that we can separate the integral into two parts: \[ I = \int \frac{x^2}{x^3 \sqrt{x^2 - 1}} \, dx - \int \frac{2}{x^3 \sqrt{x^2 - 1}} \, dx. \] This simplifies to: \[ I = \int \frac{1}{x \sqrt{x^2 - 1}} \, dx - 2 \int \frac{1}{x^3 \sqrt{x^2 - 1}} \, dx. \] ### Step 1: Substitution We will use the substitution \( u = \sqrt{x^2 - 1} \). Then, differentiating both sides gives: \[ du = \frac{x}{\sqrt{x^2 - 1}} \, dx \quad \Rightarrow \quad dx = \frac{\sqrt{x^2 - 1}}{x} \, du. \] From our substitution, we also have \( x^2 = u^2 + 1 \), which implies \( x = \sqrt{u^2 + 1} \). ### Step 2: Change of Variables Now, we can express the integrals in terms of \( u \): 1. For the first integral: \[ \int \frac{1}{x \sqrt{x^2 - 1}} \, dx = \int \frac{1}{\sqrt{u^2 + 1} \cdot u} \cdot \frac{u}{\sqrt{u^2}} \, du = \int \frac{1}{\sqrt{u^2 + 1}} \, du. \] 2. For the second integral: \[ -2 \int \frac{1}{x^3 \sqrt{x^2 - 1}} \, dx = -2 \int \frac{1}{(u^2 + 1)^{3/2} \cdot u} \cdot \frac{u}{\sqrt{u^2}} \, du = -2 \int \frac{1}{(u^2 + 1)^{3/2}} \, du. \] ### Step 3: Evaluate the Integrals Now we need to evaluate the two integrals: 1. The first integral: \[ \int \frac{1}{\sqrt{u^2 + 1}} \, du = \ln |u + \sqrt{u^2 + 1}| + C_1. \] 2. The second integral: Using the formula for the integral of \( \frac{1}{(u^2 + a^2)^{n}} \): \[ -2 \int \frac{1}{(u^2 + 1)^{3/2}} \, du = -2 \cdot \frac{u}{(u^2 + 1)^{1/2}} + C_2. \] ### Step 4: Combine Results Combining these results, we have: \[ I = \ln |u + \sqrt{u^2 + 1}| - \frac{2u}{\sqrt{u^2 + 1}} + C. \] ### Step 5: Substitute Back Now substituting back \( u = \sqrt{x^2 - 1} \): \[ I = \ln |\sqrt{x^2 - 1} + x| - \frac{2\sqrt{x^2 - 1}}{x} + C. \] ### Final Answer Thus, the integral evaluates to: \[ \int \frac{x^2 - 2}{x^3 \sqrt{x^2 - 1}} \, dx = \ln |\sqrt{x^2 - 1} + x| - \frac{2\sqrt{x^2 - 1}}{x} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

int({x+sqrt(x^(2)+1)})^n/(sqrt(x^(2)+1))dx is equal to

int(x+2)/((x^(2)+3x+3)sqrt(x+1))dx " is equal to"

int_((e^x(2-x^2))/((1-x)sqrt(1-x^2))\ dx) is equal to

int (x^(2) +1)/(sqrt(x^(2)+3))dx

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

int(2x-1)/(sqrt(x^(2)-x-1))dx

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to