Home
Class 12
MATHS
int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal...

`int(sqrt(x))/(1+4sqrt(x^(3)))dx` is equal to

A

`(4)/(3)[1+x^(3//4)+log_(e)(1+x^(3//4))]+C`

B

`(4)/(3)[1+x^(3//4)-log_(e)(1+x^(3//4))]+C`

C

`(4)/(3)[1+x^(3//4)+log_(e)(1+x^(3//4))]+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sqrt{x}}{1 + 4\sqrt{x^3}} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( T = 4\sqrt{x^3} \). Then we differentiate \( T \) with respect to \( x \): \[ T = 4x^{3/2} \] Differentiating both sides gives: \[ \frac{dT}{dx} = 4 \cdot \frac{3}{2} x^{1/2} = 6\sqrt{x} \] Thus, we can express \( \sqrt{x} \, dx \) in terms of \( dT \): \[ \sqrt{x} \, dx = \frac{dT}{6} \] ### Step 2: Rewrite the Integral Substituting \( T \) into the integral, we have: \[ I = \int \frac{\frac{dT}{6}}{1 + T} \] This simplifies to: \[ I = \frac{1}{6} \int \frac{dT}{1 + T} \] ### Step 3: Integrate The integral \( \int \frac{dT}{1 + T} \) is a standard integral: \[ \int \frac{dT}{1 + T} = \log(1 + T) + C \] Thus, substituting back, we get: \[ I = \frac{1}{6} \left( \log(1 + T) + C \right) \] ### Step 4: Substitute Back for \( T \) Now we substitute back \( T = 4\sqrt{x^3} \): \[ I = \frac{1}{6} \log(1 + 4\sqrt{x^3}) + C \] ### Final Answer Thus, the final result for the integral is: \[ I = \frac{1}{6} \log(1 + 4\sqrt{x^3}) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(cos sqrt(x))/( sqrt(x)) dx is equal to

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

inte^(sqrt(x))dx is equal to

int(3sqrt(x)+(1)/(3sqrt(x)))^(3)dx equals

int(1+x)/(1+3sqrt(x))dx is equal to

int sqrt(e^(x)-1)dx is equal to

int sqrt((1+sqrt(x))/(1-sqrt(x))dx

int sqrt(x)(1+x^(1//3))^(4)dx " is equal to "

int({x+sqrt(x^(2)+1)})^n/(sqrt(x^(2)+1))dx is equal to