Home
Class 12
MATHS
int(x+3sqrt(x^(2))+6sqrt(x))/(x(1+3sqrt(...

`int(x+3sqrt(x^(2))+6sqrt(x))/(x(1+3sqrt(x)))dx`

A

`(3)/(2)x^(2//3)+6tan^(-1)x^(1//6)+C`

B

`(3)/(2)x^(2//3)-6tan^(-1)x^(1//6)+C`

C

`-(3)/(2)x^(2//3)-6tan^(-1)x^(1//6)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x + 3\sqrt{x^2} + 6\sqrt{x}}{x(1 + 3\sqrt{x})} \, dx, \] we will simplify the expression step by step. ### Step 1: Simplify the integrand First, we rewrite the integrand: \[ \int \frac{x + 3\sqrt{x^2} + 6\sqrt{x}}{x(1 + 3\sqrt{x})} \, dx. \] Notice that \(\sqrt{x^2} = x\) for \(x \geq 0\). Thus, we can rewrite the numerator: \[ x + 3\sqrt{x^2} + 6\sqrt{x} = x + 3x + 6\sqrt{x} = 4x + 6\sqrt{x}. \] Now, substituting this back into the integral gives us: \[ \int \frac{4x + 6\sqrt{x}}{x(1 + 3\sqrt{x})} \, dx. \] ### Step 2: Split the integral We can split the integral into two parts: \[ \int \frac{4x}{x(1 + 3\sqrt{x})} \, dx + \int \frac{6\sqrt{x}}{x(1 + 3\sqrt{x})} \, dx. \] This simplifies to: \[ \int \frac{4}{1 + 3\sqrt{x}} \, dx + \int \frac{6\sqrt{x}}{x(1 + 3\sqrt{x})} \, dx. \] ### Step 3: Simplify the second integral For the second integral, we can rewrite \(\frac{6\sqrt{x}}{x} = \frac{6}{\sqrt{x}}\): \[ \int \frac{6}{\sqrt{x}(1 + 3\sqrt{x})} \, dx. \] ### Step 4: Substitution for the first integral For the first integral, let \(u = 1 + 3\sqrt{x}\). Then, we have: \[ \sqrt{x} = \frac{u - 1}{3} \quad \text{and} \quad x = \left(\frac{u - 1}{3}\right)^2. \] Now, we differentiate \(u\): \[ du = \frac{3}{2\sqrt{x}} \, dx \quad \Rightarrow \quad dx = \frac{2\sqrt{x}}{3} \, du = \frac{2(u - 1)}{9} \, du. \] Substituting this into the integral gives: \[ \int \frac{4}{u} \cdot \frac{2(u - 1)}{9} \, du = \frac{8}{9} \int \frac{u - 1}{u} \, du = \frac{8}{9} \left( \int 1 \, du - \int \frac{1}{u} \, du \right). \] ### Step 5: Solve the integrals Now we can solve the integrals: \[ \frac{8}{9} \left( u - \ln |u| \right) + C = \frac{8}{9} \left( 1 + 3\sqrt{x} - \ln |1 + 3\sqrt{x}| \right) + C. \] ### Step 6: Substitute back for the second integral For the second integral, we can use the substitution \(v = \sqrt{x}\), so \(x = v^2\) and \(dx = 2v \, dv\): \[ \int \frac{6}{v(1 + 3v)} \cdot 2v \, dv = 12 \int \frac{1}{1 + 3v} \, dv = 4 \ln |1 + 3v| + C. \] ### Final Answer Combining both parts, we have: \[ \frac{8}{9} \left( 1 + 3\sqrt{x} - \ln |1 + 3\sqrt{x}| \right) + 4 \ln |1 + 3\sqrt{x}| + C. \] Thus, the final answer is: \[ \frac{8}{9} + \frac{8}{3}\sqrt{x} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (i) int_(0)^(1)(3sqrt(x^(2))-4sqrt(x))/(sqrt(x))dx , (ii) int_(0)^(1)x cos(tan^(1)x)dx

int(sqrt(1-x^(2))+1)/(sqrt(1-x)+1/sqrt(1+x))dx

int((x-3)^2)/(sqrt(x))dx

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(4)))dx=

Evaluate int(1)/(sqrt(x))(sqrt(x)+(1)/(sqrt(x)))^(2)dx

(1) Evaluate: int(1+x+sqrt(x+x^(2)))/(sqrt(x)+sqrt(1+x))*dx=

Evaluate: int(sqrt(a)-sqrt(x))/(1-sqrt(a x))\ dx

(7) int(1)/(sqrt(x+x sqrt(x)))dx

int sqrt((1+sqrt(x))/(1-sqrt(x))dx

int(sqrt (x)+1/sqrt (x))^2dx