Home
Class 12
MATHS
If e^y+xy=e then the value of (d^2y)/(dx...

If `e^y+xy=e` then the value of `(d^2y)/(dx^2)` for `x=0` is

A

`1//e`

B

`1//e^(2)`

C

`1//e^(3)`

D

e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ e^y + xy = e \] ### Step 1: Differentiate both sides with respect to \( x \) Differentiating both sides gives us: \[ \frac{d}{dx}(e^y) + \frac{d}{dx}(xy) = \frac{d}{dx}(e) \] Since \( e \) is a constant, its derivative is 0. Now we apply the chain rule and the product rule: 1. For \( \frac{d}{dx}(e^y) \), we use the chain rule: \[ \frac{d}{dx}(e^y) = e^y \frac{dy}{dx} \] 2. For \( \frac{d}{dx}(xy) \), we use the product rule: \[ \frac{d}{dx}(xy) = x \frac{dy}{dx} + y \] Putting this all together, we have: \[ e^y \frac{dy}{dx} + x \frac{dy}{dx} + y = 0 \] ### Step 2: Rearranging the equation We can factor out \( \frac{dy}{dx} \): \[ (e^y + x) \frac{dy}{dx} + y = 0 \] Now, solving for \( \frac{dy}{dx} \): \[ (e^y + x) \frac{dy}{dx} = -y \] Thus, \[ \frac{dy}{dx} = \frac{-y}{e^y + x} \] ### Step 3: Evaluate at \( x = 0 \) Substituting \( x = 0 \) into the original equation to find \( y \): \[ e^y + 0 \cdot y = e \] \[ e^y = e \] \[ y = 1 \] Now substituting \( x = 0 \) and \( y = 1 \) into the derivative: \[ \frac{dy}{dx} = \frac{-1}{e^1 + 0} = \frac{-1}{e} \] ### Step 4: Differentiate again to find \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \) again with respect to \( x \): Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{(e^y + x) \frac{d}{dx}(-y) - (-y) \frac{d}{dx}(e^y + x)}{(e^y + x)^2} \] Calculating \( \frac{d}{dx}(-y) = -\frac{dy}{dx} \) and \( \frac{d}{dx}(e^y + x) = e^y \frac{dy}{dx} + 1 \): Substituting these into the equation gives: \[ \frac{d^2y}{dx^2} = \frac{(e^y + x)(-\frac{dy}{dx}) - (-y)(e^y \frac{dy}{dx} + 1)}{(e^y + x)^2} \] ### Step 5: Substitute \( x = 0 \) and \( y = 1 \) Substituting \( x = 0 \) and \( y = 1 \): \[ \frac{d^2y}{dx^2} = \frac{(e^1 + 0)(\frac{1}{e}) - (-1)(e^1 \cdot \frac{-1}{e} + 1)}{(e + 0)^2} \] This simplifies to: \[ \frac{d^2y}{dx^2} = \frac{(e)(\frac{-1}{e}) - (-1)(-1 + 1)}{e^2} \] Calculating this gives: \[ \frac{d^2y}{dx^2} = \frac{-1}{e} \] Thus, the value of \( \frac{d^2y}{dx^2} \) at \( x = 0 \) is: \[ \frac{d^2y}{dx^2} = -\frac{1}{e} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If dy/dx=e^(-2y) and y=0 when x=5, then the value of x for y=3 is

If y = int_(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(2)) at x = e

If x=e^tsint,y=e^tcost then (d^2y)/(dx^2) at x=pi is

Let y=ln (1+ cos x)^(2). The the value of (d^(2)y)/(dx^(2))+(2)/(e^(y//2)) equals

If y=e^-x cos x , show that (d^2y)/(dx^2)= 2e^-x sin x

if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2 .

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2 .

If e^y(x+1)=1 . Show that (d^2y)/(dx^2)=((dy)/(dx))^2

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Chapter Test
  1. If f(x)=log(e)[log(e)x], then what is f' (e) equal to?

    Text Solution

    |

  2. If e^y+xy=e then the value of (d^2y)/(dx^2) for x=0 is

    Text Solution

    |

  3. If sqrt(x+y) +sqrt(y-x)=5, then (d^(2)y)/(dx ^(2))=

    Text Solution

    |

  4. "If "ax^(2)+2hxy+by^(2)=1," then "(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  5. If f(x)=sin{(pi)/(2)[x]-x^(5)},1ltxlt2 and [.] denotes the greatest in...

    Text Solution

    |

  6. f(x) is a polynomial of degree

    Text Solution

    |

  7. If y=sin(log(e)x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

    Text Solution

    |

  8. If f(x)=(1-x)^n, then the value of f(0)+f^(prime)(0)+(f^('')(0))/(2!)+...

    Text Solution

    |

  9. "If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

    Text Solution

    |

  10. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  11. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  12. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  13. y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]

    Text Solution

    |

  14. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  15. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  16. If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

    Text Solution

    |

  17. Let a function f:RtoR satisfy the equation f(x+y)=f(x)=f(Y)AAx, yepsil...

    Text Solution

    |

  18. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  19. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  20. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |