Home
Class 12
MATHS
If y=sin(log(e)x), then x^(2)(d^(2)y)/(d...

If `y=sin(log_(e)x)`, then `x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)` is equal to

A

`sin(log_(e)x)`

B

`cos(log_(e)x)`

C

`y^(2)`

D

`-y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} \) given that \( y = \sin(\log_e x) \). ### Step 1: Differentiate \( y \) with respect to \( x \) Given: \[ y = \sin(\log_e x) \] Using the chain rule: \[ \frac{dy}{dx} = \cos(\log_e x) \cdot \frac{d}{dx}(\log_e x) \] We know: \[ \frac{d}{dx}(\log_e x) = \frac{1}{x} \] So, \[ \frac{dy}{dx} = \cos(\log_e x) \cdot \frac{1}{x} = \frac{\cos(\log_e x)}{x} \] ### Step 2: Differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{\cos(\log_e x)}{x}\right) \] Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{x \cdot \frac{d}{dx}(\cos(\log_e x)) - \cos(\log_e x) \cdot \frac{d}{dx}(x)}{x^2} \] We need to compute \( \frac{d}{dx}(\cos(\log_e x)) \): \[ \frac{d}{dx}(\cos(\log_e x)) = -\sin(\log_e x) \cdot \frac{d}{dx}(\log_e x) = -\sin(\log_e x) \cdot \frac{1}{x} \] Substituting this back: \[ \frac{d^2y}{dx^2} = \frac{x \left(-\sin(\log_e x) \cdot \frac{1}{x}\right) - \cos(\log_e x) \cdot 1}{x^2} \] \[ = \frac{-\sin(\log_e x) - \cos(\log_e x)}{x^2} \] ### Step 3: Substitute \( \frac{dy}{dx} \) and \( \frac{d^2y}{dx^2} \) into the expression Now we substitute \( \frac{dy}{dx} \) and \( \frac{d^2y}{dx^2} \) into the expression \( x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} \): \[ x^2 \frac{d^2y}{dx^2} = x^2 \cdot \frac{-\sin(\log_e x) - \cos(\log_e x)}{x^2} = -\sin(\log_e x) - \cos(\log_e x) \] \[ x \frac{dy}{dx} = x \cdot \frac{\cos(\log_e x)}{x} = \cos(\log_e x) \] Combining these: \[ x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = -\sin(\log_e x) - \cos(\log_e x) + \cos(\log_e x) \] \[ = -\sin(\log_e x) \] ### Final Result Thus, the final answer is: \[ x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = -\sin(\log_e x) \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If y=sin(logx) , prove that x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

If y="sin"(logx), then prove that (x^2d^2y)/(dx^2)+x(dy)/(dx)+y=0

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

If y=(log x)/(x) then (d^(2)y)/(dx^(2))=

If y=sin^(-1)x , show that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0 .

If y=Acos(logx)+B sin(logx) then prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0 .

(i) If y=asin(log x) then prove that x^(2)*(d^2y)/(dx^2)+x(dy)/(dx)+y=0 . (ii) If y=acos(log_(e)x)+bsin(log_(e)x) , then prove that x^2*(d^2y)/(dx^2)+x*dy/dx+y=0 .

If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/(dx)=- ky, where k =

If 2^(x)+2^(y)=2^(x+y) then (dy)/(dx) is equal to

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Chapter Test
  1. If f(x)=sin{(pi)/(2)[x]-x^(5)},1ltxlt2 and [.] denotes the greatest in...

    Text Solution

    |

  2. f(x) is a polynomial of degree

    Text Solution

    |

  3. If y=sin(log(e)x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

    Text Solution

    |

  4. If f(x)=(1-x)^n, then the value of f(0)+f^(prime)(0)+(f^('')(0))/(2!)+...

    Text Solution

    |

  5. "If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

    Text Solution

    |

  6. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  7. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  8. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  9. y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]

    Text Solution

    |

  10. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  11. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  12. If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

    Text Solution

    |

  13. Let a function f:RtoR satisfy the equation f(x+y)=f(x)=f(Y)AAx, yepsil...

    Text Solution

    |

  14. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  15. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  16. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |

  17. If y=logu|cos4x|+|sinx|,where u=sec2x find (dy)/(dx) at x=-pi/6

    Text Solution

    |

  18. If f(4)= 4, f'(4) =1 then lim(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is ...

    Text Solution

    |

  19. if 2x^2-3xy+y^2+x+2y-8=0 then (dy)/(dx)

    Text Solution

    |

  20. If y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)tan^(-1)x," then "(dy)/(dx)=

    Text Solution

    |