Home
Class 12
MATHS
If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), the...

If `8f(x)+6f(1/x)=x+5` and `y=x^2(f(x),` then `(dy)/(dx)` at `x=-1` is equal to 0 (b) `-1/(14)` (c) `-1/4` (d) None of these

A

0

B

`(1)/(14)`

C

`-(1)/(14)`

D

`(1)/(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find \( \frac{dy}{dx} \) at \( x = -1 \) given the equations: 1. \( 8f(x) + 6f\left(\frac{1}{x}\right) = x + 5 \) 2. \( y = x^2 f(x) \) ### Step 1: Find \( f(-1) \) We start by substituting \( x = -1 \) into the first equation: \[ 8f(-1) + 6f(-1) = -1 + 5 \] This simplifies to: \[ 14f(-1) = 4 \] Now, solving for \( f(-1) \): \[ f(-1) = \frac{4}{14} = \frac{2}{7} \] ### Step 2: Differentiate the equation Next, we differentiate the equation \( 8f(x) + 6f\left(\frac{1}{x}\right) = x + 5 \) with respect to \( x \): Using the product and chain rule, we differentiate: \[ 8f'(x) + 6\left(-\frac{1}{x^2}f'\left(\frac{1}{x}\right)\right) = 1 \] This simplifies to: \[ 8f'(x) - \frac{6}{x^2}f'\left(\frac{1}{x}\right) = 1 \] ### Step 3: Substitute \( x = -1 \) Now we substitute \( x = -1 \): \[ 8f'(-1) - 6f'(-1) = 1 \] This simplifies to: \[ 2f'(-1) = 1 \] Thus, \[ f'(-1) = \frac{1}{2} \] ### Step 4: Differentiate \( y = x^2 f(x) \) Now we differentiate \( y = x^2 f(x) \) using the product rule: \[ \frac{dy}{dx} = x^2 f'(x) + 2x f(x) \] ### Step 5: Substitute \( x = -1 \) into \( \frac{dy}{dx} \) Now we substitute \( x = -1 \): \[ \frac{dy}{dx} = (-1)^2 f'(-1) + 2(-1) f(-1) \] Substituting the values we found earlier: \[ \frac{dy}{dx} = 1 \cdot \frac{1}{2} + 2(-1) \cdot \frac{2}{7} \] This simplifies to: \[ \frac{dy}{dx} = \frac{1}{2} - \frac{4}{7} \] ### Step 6: Find a common denominator and simplify The common denominator between 2 and 7 is 14: \[ \frac{dy}{dx} = \frac{7}{14} - \frac{8}{14} = \frac{-1}{14} \] ### Final Answer Thus, \( \frac{dy}{dx} \) at \( x = -1 \) is: \[ \frac{dy}{dx} = -\frac{1}{14} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal to (a)0 (b) 1/(14) (c) -1/4 (d) None of these

If 5f(x)+3f(1/x)=x+2 and y=x f(x), then find dy/dx at x=1 .

If 5f(x)+3f(1/x)=x+2 and y=x f(x), then find dy/dx at x=1 .

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2),t h e n(dy)/(dx) at x=1 is (a)2 (b) 1 (c) -2 (d) none of these

If 2f(x)-3f(1/x)=x^2(x!=0), then f(2) is equal to (a) -7/4("b")""5/2 (c) -1 (d) none of these

Let f'(x) = sin(x^2) and y = f(x^2 +1) then dy/dx at x=1 is

If f(x)=(x+1)^(cotx) be continuous at x=0, the f(0) is equal to (a) 0 (b) 1/e (c) e (d) none of these

If y=f((2x-1)/(x^2+1)) and f^'(x)=sinx^2 , then find (dy)/(dx)

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Chapter Test
  1. If f(x)=(1-x)^n, then the value of f(0)+f^(prime)(0)+(f^('')(0))/(2!)+...

    Text Solution

    |

  2. "If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

    Text Solution

    |

  3. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  4. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  5. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  6. y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]

    Text Solution

    |

  7. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  8. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  9. If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

    Text Solution

    |

  10. Let a function f:RtoR satisfy the equation f(x+y)=f(x)=f(Y)AAx, yepsil...

    Text Solution

    |

  11. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  12. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  13. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |

  14. If y=logu|cos4x|+|sinx|,where u=sec2x find (dy)/(dx) at x=-pi/6

    Text Solution

    |

  15. If f(4)= 4, f'(4) =1 then lim(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is ...

    Text Solution

    |

  16. if 2x^2-3xy+y^2+x+2y-8=0 then (dy)/(dx)

    Text Solution

    |

  17. If y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)tan^(-1)x," then "(dy)/(dx)=

    Text Solution

    |

  18. If x=costheta,y=sin5theta," then "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx...

    Text Solution

    |

  19. If f : R - R is an even function which is twice differentiable on R an...

    Text Solution

    |

  20. Observe the following statements: "I. If "f(x)=ax^(41)+bx^(-40)," ...

    Text Solution

    |