Home
Class 12
MATHS
If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(l...

If `f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}`, then f'( e )

A

does not exist

B

is equal to `(2)/( e )`

C

is equal to `(1)/( e )`

D

is equal to 1

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(e) \) for the function \[ f(x) = \cos^{-1}\left(\frac{1 - (\log_e x)^2}{1 + (\log_e x)^2}\right), \] we will follow these steps: ### Step 1: Substitute \( \log_e x \) with \( \tan \theta \) Let \( \log_e x = \tan \theta \). Then, we can express \( x \) as: \[ x = e^{\tan \theta}. \] ### Step 2: Rewrite \( f(x) \) Using the identity for cosine of double angle, we can rewrite \( f(x) \): \[ f(x) = \cos^{-1}(\cos(2\theta)) = 2\theta. \] ### Step 3: Find \( \theta \) in terms of \( x \) Since \( \theta = \tan^{-1}(\log_e x) \), we can express \( f(x) \) as: \[ f(x) = 2 \tan^{-1}(\log_e x). \] ### Step 4: Differentiate \( f(x) \) Now we need to differentiate \( f(x) \): \[ f'(x) = 2 \cdot \frac{d}{dx} \left( \tan^{-1}(\log_e x) \right). \] Using the chain rule: \[ \frac{d}{dx} \left( \tan^{-1}(u) \right) = \frac{1}{1 + u^2} \cdot \frac{du}{dx}, \] where \( u = \log_e x \) and \( \frac{du}{dx} = \frac{1}{x} \). Thus, we have: \[ f'(x) = 2 \cdot \frac{1}{1 + (\log_e x)^2} \cdot \frac{1}{x}. \] ### Step 5: Evaluate \( f'(e) \) Now we will evaluate \( f'(e) \): 1. Calculate \( \log_e e \): \[ \log_e e = 1. \] 2. Substitute \( x = e \) into \( f'(x) \): \[ f'(e) = 2 \cdot \frac{1}{1 + (1)^2} \cdot \frac{1}{e} = 2 \cdot \frac{1}{2} \cdot \frac{1}{e} = \frac{1}{e}. \] ### Final Answer Thus, \[ f'(e) = \frac{1}{e}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}, then f'((1)/( e )) is equal to

If f(x)=|log_(e) x|,then

If y=tan^(-1){((log)_e(e//x^2))/((log)_e(e x^2))}+tan^(-1)((3+2\ (log)_e x)/(1-6\ (log)_e x)) , then (d^2y)/(dx^2)= (a) 2 (b) 1 (c) 0 (d) -1

Find the value of lim_(xto0^(+)) (3(log_(e)x)^(2)+5log_(e)x+6)/(1+(log_(e)x)^(2)).

If f(x)=log_(x^(2))(logx) ,then f '(x)at x= e is

int(1)/(x cos^(2)(log_(e)x))dx

"If "log_(e)(log_(e) x-log_(e)y)=e^(x^(2_(y)))(1-log_(e)x)," then find the value of "y'(e).

"If "log_(e)(log_(e) x-log_(e)y)=e^(x^(2_(y)))(1-log_(e)x)," then find the value of "y'(e).

If f(x) =|log_(e)|x||, then f'(x) equals

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Chapter Test
  1. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  2. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  3. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  4. y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]

    Text Solution

    |

  5. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  6. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  7. If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

    Text Solution

    |

  8. Let a function f:RtoR satisfy the equation f(x+y)=f(x)=f(Y)AAx, yepsil...

    Text Solution

    |

  9. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  10. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  11. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |

  12. If y=logu|cos4x|+|sinx|,where u=sec2x find (dy)/(dx) at x=-pi/6

    Text Solution

    |

  13. If f(4)= 4, f'(4) =1 then lim(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is ...

    Text Solution

    |

  14. if 2x^2-3xy+y^2+x+2y-8=0 then (dy)/(dx)

    Text Solution

    |

  15. If y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)tan^(-1)x," then "(dy)/(dx)=

    Text Solution

    |

  16. If x=costheta,y=sin5theta," then "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx...

    Text Solution

    |

  17. If f : R - R is an even function which is twice differentiable on R an...

    Text Solution

    |

  18. Observe the following statements: "I. If "f(x)=ax^(41)+bx^(-40)," ...

    Text Solution

    |

  19. If x=e^tsint,y=e^tcost then (d^2y)/(dx^2) at x=pi is

    Text Solution

    |

  20. The value of (dy)/(dx) at x=(pi)/(2), where y is given by y=x^(sinx)...

    Text Solution

    |