Home
Class 12
MATHS
If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sin...

If `f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3))` and `g((5)/(4))=3`, then `(d)/(dx)(gof(x))`=

A

1

B

0

C

-1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to differentiate the composition of functions \( g(f(x)) \) where \( f(x) \) is given as: \[ f(x) = \cos^2 x + \cos^2 \left( x + \frac{\pi}{3} \right) + \sin x \sin \left( x + \frac{\pi}{3} \right) \] ### Step 1: Simplify \( f(x) \) We start by simplifying \( f(x) \). 1. **Using the cosine addition formula**: \[ \cos\left(x + \frac{\pi}{3}\right) = \cos x \cos\frac{\pi}{3} - \sin x \sin\frac{\pi}{3} = \cos x \cdot \frac{1}{2} - \sin x \cdot \frac{\sqrt{3}}{2} \] Thus, \[ \cos^2\left(x + \frac{\pi}{3}\right) = \left(\frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x\right)^2 \] Expanding this: \[ = \frac{1}{4} \cos^2 x - \frac{\sqrt{3}}{2} \cos x \sin x + \frac{3}{4} \sin^2 x \] 2. **Using the sine addition formula**: \[ \sin\left(x + \frac{\pi}{3}\right) = \sin x \cos\frac{\pi}{3} + \cos x \sin\frac{\pi}{3} = \sin x \cdot \frac{1}{2} + \cos x \cdot \frac{\sqrt{3}}{2} \] Therefore, \[ \sin x \sin\left(x + \frac{\pi}{3}\right) = \sin x \left(\frac{1}{2} \sin x + \frac{\sqrt{3}}{2} \cos x\right) \] Expanding this: \[ = \frac{1}{2} \sin^2 x + \frac{\sqrt{3}}{2} \sin x \cos x \] Combining these results, we have: \[ f(x) = \cos^2 x + \left(\frac{1}{4} \cos^2 x - \frac{\sqrt{3}}{2} \cos x \sin x + \frac{3}{4} \sin^2 x\right) + \left(\frac{1}{2} \sin^2 x + \frac{\sqrt{3}}{2} \sin x \cos x\right) \] ### Step 2: Combine like terms Combining all terms: \[ f(x) = \cos^2 x + \frac{1}{4} \cos^2 x + \frac{3}{4} \sin^2 x + \frac{1}{2} \sin^2 x + \left(-\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}\right) \cos x \sin x \] This simplifies to: \[ f(x) = \frac{5}{4} \cos^2 x + \frac{5}{4} \sin^2 x = \frac{5}{4}(\cos^2 x + \sin^2 x) = \frac{5}{4} \] ### Step 3: Differentiate \( g(f(x)) \) Since \( f(x) = \frac{5}{4} \) is a constant function, we find the derivative: \[ \frac{d}{dx} g(f(x)) = g'(f(x)) \cdot f'(x) \] ### Step 4: Calculate \( f'(x) \) Since \( f(x) \) is a constant: \[ f'(x) = 0 \] ### Step 5: Final result Thus, we have: \[ \frac{d}{dx} g(f(x)) = g'\left(\frac{5}{4}\right) \cdot 0 = 0 \] ### Conclusion The final answer is: \[ \frac{d}{dx} g(f(x)) = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

Prove that : cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))=(3)/(2)

If f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+pi/3) and g(5/4)=1, then (gof)(x) is ____________

Prove that cos^2x+cos^2(x+pi/3)+cos^2(x-pi/3)=3/2 .

If f(x)=cos^-1(sinx(4cos^2x-1)), then 1/pif'(pi/3).f(pi/10) is

If dy/dx+3/cos^2xy=1/cos^2x,x in((-pi)/3,pi/3)and y(pi/4)=4/3," then "y(-pi/4) equals

cos((3pi)/(4)+x)-cos((3pi)/(4)-x) = -sqrt(2)sinx

Prove that cos ^(3) (x-(2pi)/(3)) + cos ^(3) x + cos ^(3) (x + (2pi)/(3)) = (3)/(4) cos 3x.

Show that f(x) =cos (2x+(pi)/(4)) is an increasing function on ((3pi)/(8), (7pi)/(8))

If f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",x lt (pi)/(2)),(a",",x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2))",",x gt (pi)/(2)):} is continuous at x=(pi)/(2) , then the value of ((b)/(a))^(5//3) is

If f (x) = sqrt(cos ec ^(2) x - 2 sin x cos x - (1)/(tan ^(2) x )) x in ((7pi)/(4), 2pi ) then f' ((11 pi)/(6))=

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Chapter Test
  1. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  2. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  3. y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]

    Text Solution

    |

  4. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  5. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  6. If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

    Text Solution

    |

  7. Let a function f:RtoR satisfy the equation f(x+y)=f(x)=f(Y)AAx, yepsil...

    Text Solution

    |

  8. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  9. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  10. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |

  11. If y=logu|cos4x|+|sinx|,where u=sec2x find (dy)/(dx) at x=-pi/6

    Text Solution

    |

  12. If f(4)= 4, f'(4) =1 then lim(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is ...

    Text Solution

    |

  13. if 2x^2-3xy+y^2+x+2y-8=0 then (dy)/(dx)

    Text Solution

    |

  14. If y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)tan^(-1)x," then "(dy)/(dx)=

    Text Solution

    |

  15. If x=costheta,y=sin5theta," then "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx...

    Text Solution

    |

  16. If f : R - R is an even function which is twice differentiable on R an...

    Text Solution

    |

  17. Observe the following statements: "I. If "f(x)=ax^(41)+bx^(-40)," ...

    Text Solution

    |

  18. If x=e^tsint,y=e^tcost then (d^2y)/(dx^2) at x=pi is

    Text Solution

    |

  19. The value of (dy)/(dx) at x=(pi)/(2), where y is given by y=x^(sinx)...

    Text Solution

    |

  20. If 2^(x)+2^(y)=2^(x+y) then (dy)/(dx)is equal to

    Text Solution

    |