Home
Class 12
MATHS
If f(x)=10cosx+(13+2x)sinx then f''(x)+f...

If `f(x)=10cosx+(13+2x)sinx` then `f''(x)+f(x)=`

A

`cosx`

B

`4cosx`

C

`sinx`

D

`4sinx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f''(x) + f(x) \) for the function \( f(x) = 10 \cos x + (13 + 2x) \sin x \). ### Step 1: Find the first derivative \( f'(x) \) Given: \[ f(x) = 10 \cos x + (13 + 2x) \sin x \] We will differentiate each term separately: 1. The derivative of \( 10 \cos x \) is \( -10 \sin x \). 2. For \( (13 + 2x) \sin x \), we will use the product rule: - Let \( u = 13 + 2x \) and \( v = \sin x \). - Then, \( u' = 2 \) and \( v' = \cos x \). - By the product rule, \( (uv)' = u'v + uv' \): \[ \frac{d}{dx}((13 + 2x) \sin x) = (2) \sin x + (13 + 2x) \cos x \] Combining these results: \[ f'(x) = -10 \sin x + (2 \sin x + (13 + 2x) \cos x) \] \[ f'(x) = (-10 + 2) \sin x + (13 + 2x) \cos x \] \[ f'(x) = -8 \sin x + 13 \cos x + 2x \cos x \] ### Step 2: Find the second derivative \( f''(x) \) Now we differentiate \( f'(x) \): \[ f'(x) = -8 \sin x + 13 \cos x + 2x \cos x \] Differentiating each term: 1. The derivative of \( -8 \sin x \) is \( -8 \cos x \). 2. The derivative of \( 13 \cos x \) is \( -13 \sin x \). 3. For \( 2x \cos x \), we again use the product rule: - Let \( u = 2x \) and \( v = \cos x \). - Then, \( u' = 2 \) and \( v' = -\sin x \). - By the product rule: \[ \frac{d}{dx}(2x \cos x) = (2) \cos x + (2x)(-\sin x) = 2 \cos x - 2x \sin x \] Combining these results: \[ f''(x) = -8 \cos x - 13 \sin x + (2 \cos x - 2x \sin x) \] \[ f''(x) = (-8 + 2) \cos x - 13 \sin x - 2x \sin x \] \[ f''(x) = -6 \cos x - 13 \sin x - 2x \sin x \] ### Step 3: Calculate \( f''(x) + f(x) \) Now we add \( f(x) \) to \( f''(x) \): \[ f(x) = 10 \cos x + (13 + 2x) \sin x \] Adding \( f''(x) \) and \( f(x) \): \[ f''(x) + f(x) = (-6 \cos x - 13 \sin x - 2x \sin x) + (10 \cos x + (13 + 2x) \sin x) \] Combining like terms: \[ = (-6 + 10) \cos x + (-13 + 13) \sin x + (-2x + 2x) \sin x \] \[ = 4 \cos x + 0 + 0 \] \[ = 4 \cos x \] ### Final Answer Thus, we have: \[ f''(x) + f(x) = 4 \cos x \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sinx+e^x , then f''(x)

f(x)=sinx+cosx+3 . find the range of f(x).

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{(1)/(2),sinx} , then f(x)=(1)/(2) is defined when x in

If f'(x)=sinx+sin4x.cosx, then f'(2x^(2)) is

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

If f(x)=sinx+cosx and g(x)=x^2-1 , then g(f (x)) is invertible in the domain .

If f(x)=sinx+cosx and g(x)=x^2-1 , then g(f (x)) is invertible in the domain .

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If y=f(x^(3)),z=g(x^(2)),f'(x),=cosx and g'(x)=sinx," then "(dy)/(dz) is

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Chapter Test
  1. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  2. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  3. y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]

    Text Solution

    |

  4. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  5. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  6. If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

    Text Solution

    |

  7. Let a function f:RtoR satisfy the equation f(x+y)=f(x)=f(Y)AAx, yepsil...

    Text Solution

    |

  8. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  9. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  10. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |

  11. If y=logu|cos4x|+|sinx|,where u=sec2x find (dy)/(dx) at x=-pi/6

    Text Solution

    |

  12. If f(4)= 4, f'(4) =1 then lim(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is ...

    Text Solution

    |

  13. if 2x^2-3xy+y^2+x+2y-8=0 then (dy)/(dx)

    Text Solution

    |

  14. If y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)tan^(-1)x," then "(dy)/(dx)=

    Text Solution

    |

  15. If x=costheta,y=sin5theta," then "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx...

    Text Solution

    |

  16. If f : R - R is an even function which is twice differentiable on R an...

    Text Solution

    |

  17. Observe the following statements: "I. If "f(x)=ax^(41)+bx^(-40)," ...

    Text Solution

    |

  18. If x=e^tsint,y=e^tcost then (d^2y)/(dx^2) at x=pi is

    Text Solution

    |

  19. The value of (dy)/(dx) at x=(pi)/(2), where y is given by y=x^(sinx)...

    Text Solution

    |

  20. If 2^(x)+2^(y)=2^(x+y) then (dy)/(dx)is equal to

    Text Solution

    |