Home
Class 12
MATHS
Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlo...

Let `f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2.` Then the set of points satisfying `f'(x)gtg'(x)`, is

A

`(0,1)`

B

`[0,1)`

C

`(0,oo)`

D

`[0,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the set of points satisfying the inequality \( f'(x) > g'(x) \) for the given functions: 1. **Define the functions**: \[ f(x) = 2^{2x - 1} \] \[ g(x) = -2^x + 2x \log 2 \] 2. **Find the derivatives \( f'(x) \) and \( g'(x) \)**: - **Derivative of \( f(x) \)**: Using the formula for the derivative of \( a^x \), which is \( a^x \log a \), we differentiate \( f(x) \): \[ f'(x) = 2^{2x - 1} \cdot \log 2 \cdot \frac{d}{dx}(2x - 1) = 2^{2x - 1} \cdot \log 2 \cdot 2 = 2^{2x - 1} \cdot 2 \log 2 = 2^{2x} \log 2 \] - **Derivative of \( g(x) \)**: We differentiate \( g(x) \): \[ g'(x) = -\frac{d}{dx}(2^x) + \frac{d}{dx}(2x \log 2) \] Using the same derivative formula: \[ g'(x) = -2^x \log 2 + 2 \log 2 \] 3. **Set up the inequality**: We need to solve the inequality: \[ f'(x) > g'(x) \] Substituting the derivatives we found: \[ 2^{2x} \log 2 > -2^x \log 2 + 2 \log 2 \] 4. **Simplify the inequality**: We can factor out \( \log 2 \) (assuming \( \log 2 > 0 \)): \[ 2^{2x} > -2^x + 2 \] Rearranging gives: \[ 2^{2x} + 2^x - 2 > 0 \] 5. **Let \( y = 2^x \)**: This substitution simplifies our inequality: \[ y^2 + y - 2 > 0 \] Factoring the quadratic: \[ (y - 1)(y + 2) > 0 \] 6. **Find the critical points**: The critical points are \( y = 1 \) and \( y = -2 \). Since \( y = 2^x \) is always positive, we only consider \( y = 1 \). 7. **Determine the intervals**: The inequality \( (y - 1)(y + 2) > 0 \) holds when: - \( y < -2 \) (not applicable since \( y > 0 \)) - \( y > 1 \) Thus, we have: \[ y > 1 \implies 2^x > 1 \implies x > 0 \] 8. **Conclusion**: The set of points satisfying \( f'(x) > g'(x) \) is: \[ x \in (0, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

Let f(x)= 2^(2x−1) and ϕ(x) = −2^x+2xlog2 . If f'(x)>ϕ'(x), then value of x is-

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(x)|=|f(x)|+|phi(x)| are :

Let f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f(x)), then

Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number of points of discontinuity of f [g (x)] is

If f(x)=sqrt(2x+3) and g(x)=x^(2)+1 , then f(g(2))=

Let f(x)=x amd g(x)=|x| for all x in R . Then the function phi(x)"satisfying"{phi(x)-f(x)}^(2)+{phi(x)-g(x)}^(2) =0 is

Let f(x)=[x] and g(x)=|x| . Find (f+2g)(-1)

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Chapter Test
  1. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  2. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  3. y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]

    Text Solution

    |

  4. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  5. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  6. If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

    Text Solution

    |

  7. Let a function f:RtoR satisfy the equation f(x+y)=f(x)=f(Y)AAx, yepsil...

    Text Solution

    |

  8. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  9. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  10. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |

  11. If y=logu|cos4x|+|sinx|,where u=sec2x find (dy)/(dx) at x=-pi/6

    Text Solution

    |

  12. If f(4)= 4, f'(4) =1 then lim(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is ...

    Text Solution

    |

  13. if 2x^2-3xy+y^2+x+2y-8=0 then (dy)/(dx)

    Text Solution

    |

  14. If y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)tan^(-1)x," then "(dy)/(dx)=

    Text Solution

    |

  15. If x=costheta,y=sin5theta," then "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx...

    Text Solution

    |

  16. If f : R - R is an even function which is twice differentiable on R an...

    Text Solution

    |

  17. Observe the following statements: "I. If "f(x)=ax^(41)+bx^(-40)," ...

    Text Solution

    |

  18. If x=e^tsint,y=e^tcost then (d^2y)/(dx^2) at x=pi is

    Text Solution

    |

  19. The value of (dy)/(dx) at x=(pi)/(2), where y is given by y=x^(sinx)...

    Text Solution

    |

  20. If 2^(x)+2^(y)=2^(x+y) then (dy)/(dx)is equal to

    Text Solution

    |