Home
Class 12
MATHS
If x=costheta,y=sin5theta," then "(1-x^(...

If `x=costheta,y=sin5theta," then "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=`

A

`-5y`

B

5y

C

25y

D

`-25y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx}\) given that \(x = \cos \theta\) and \(y = \sin 5\theta\). ### Step-by-Step Solution: 1. **Define the Variables:** - Let \(x = \cos \theta\) - Let \(y = \sin 5\theta\) 2. **Find \(\frac{dx}{d\theta}\):** \[ \frac{dx}{d\theta} = -\sin \theta \] 3. **Find \(\frac{dy}{d\theta}\):** \[ \frac{dy}{d\theta} = 5\cos 5\theta \] 4. **Find \(\frac{dy}{dx}\) using the chain rule:** \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{5\cos 5\theta}{-\sin \theta} = -\frac{5\cos 5\theta}{\sin \theta} \] 5. **Find \(\frac{d^2y}{dx^2}\):** - First, we need to differentiate \(\frac{dy}{dx}\) with respect to \(\theta\): \[ \frac{d^2y}{dx^2} = \frac{d}{d\theta}\left(-\frac{5\cos 5\theta}{\sin \theta}\right) \cdot \frac{d\theta}{dx} \] - We already found \(\frac{d\theta}{dx} = -\frac{1}{\sin \theta}\). 6. **Differentiate \(-\frac{5\cos 5\theta}{\sin \theta}\):** - Using the quotient rule: \[ \frac{d}{d\theta}\left(-\frac{5\cos 5\theta}{\sin \theta}\right) = -\frac{(-5\sin 5\theta)(\sin \theta) - (5\cos 5\theta)(\cos \theta)}{\sin^2 \theta} \] - Simplifying gives: \[ = \frac{5\sin 5\theta \sin \theta + 5\cos 5\theta \cos \theta}{\sin^2 \theta} \] 7. **Substituting \(\frac{d^2y}{dx^2}\):** \[ \frac{d^2y}{dx^2} = \left(\frac{5\sin 5\theta \sin \theta + 5\cos 5\theta \cos \theta}{\sin^2 \theta}\right) \cdot \left(-\frac{1}{\sin \theta}\right) \] \[ = -\frac{5(\sin 5\theta \sin \theta + \cos 5\theta \cos \theta)}{\sin^3 \theta} \] \[ = -\frac{5\cos(5\theta - \theta)}{\sin^3 \theta} = -\frac{5\cos 4\theta}{\sin^3 \theta} \] 8. **Substituting into the original expression:** \[ (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} \] - Since \(x^2 = \cos^2 \theta\), we have: \[ 1 - x^2 = \sin^2 \theta \] - Thus: \[ \sin^2 \theta \left(-\frac{5\cos 4\theta}{\sin^3 \theta}\right) - \cos \theta \left(-\frac{5\cos 5\theta}{\sin \theta}\right) \] \[ = -\frac{5\sin^2 \theta \cos 4\theta}{\sin^3 \theta} + \frac{5\cos \theta \cos 5\theta}{\sin \theta} \] \[ = -\frac{5\cos 4\theta}{\sin \theta} + \frac{5\cos \theta \cos 5\theta}{\sin \theta} \] 9. **Final Simplification:** - Combine the terms: \[ = \frac{5}{\sin \theta} \left(-\cos 4\theta + \cos \theta \cos 5\theta\right) \] - Since \(y = \sin 5\theta\), we can express the final result in terms of \(y\): \[ = -25y \] ### Final Result: \[ (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} = -25y \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If x=costheta,y=sin^3theta,"prove that" y(d^2y)/(dx^2)+((dy)/(dx))^2=3sin^2theta(5cos^2theta-1)dot

If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((dy)/(dx))^(2)|at theta=(pi)/(2) is:

If x=costheta , y=s in^3theta , prove that y\ (d^2y)/(dx^2)+((dy)/(dx))^2=3\ s in^2theta(5\ cos^2theta-1) .

If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/(dx)=- ky, where k =

If y=sin^(-1)x , show that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0 .

If y=e^("mcos"^(-1)x) , prove that: (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=m^(2)y

If x=sint,y=sinpt , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2 y=0 .

If x=sint ,y=sinpt , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Chapter Test
  1. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  2. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  3. y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]

    Text Solution

    |

  4. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  5. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  6. If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

    Text Solution

    |

  7. Let a function f:RtoR satisfy the equation f(x+y)=f(x)=f(Y)AAx, yepsil...

    Text Solution

    |

  8. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  9. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  10. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |

  11. If y=logu|cos4x|+|sinx|,where u=sec2x find (dy)/(dx) at x=-pi/6

    Text Solution

    |

  12. If f(4)= 4, f'(4) =1 then lim(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is ...

    Text Solution

    |

  13. if 2x^2-3xy+y^2+x+2y-8=0 then (dy)/(dx)

    Text Solution

    |

  14. If y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)tan^(-1)x," then "(dy)/(dx)=

    Text Solution

    |

  15. If x=costheta,y=sin5theta," then "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx...

    Text Solution

    |

  16. If f : R - R is an even function which is twice differentiable on R an...

    Text Solution

    |

  17. Observe the following statements: "I. If "f(x)=ax^(41)+bx^(-40)," ...

    Text Solution

    |

  18. If x=e^tsint,y=e^tcost then (d^2y)/(dx^2) at x=pi is

    Text Solution

    |

  19. The value of (dy)/(dx) at x=(pi)/(2), where y is given by y=x^(sinx)...

    Text Solution

    |

  20. If 2^(x)+2^(y)=2^(x+y) then (dy)/(dx)is equal to

    Text Solution

    |