Home
Class 12
MATHS
Observe the following statements: "I. ...

Observe the following statements:
`"I. If "f(x)=ax^(41)+bx^(-40)," then "(f''(x))/(f(x))=1640x^(2)`
`"II. "(d)/(dx){tan^(-1)((2x)/(1-x^(2)))}=(1)/(1+x^(2))`
Which of the following is correct ?

A

I is true, but II is false

B

Both I and II true

C

Neither I nor II is true

D

I is false, but II is true

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze both statements one by one. ### Statement I: If \( f(x) = ax^{41} + bx^{-40} \), then we need to check if \[ \frac{f''(x)}{f(x)} = 1640x^2 \] **Step 1: Find \( f'(x) \)** Using the power rule of differentiation: \[ f'(x) = \frac{d}{dx}(ax^{41}) + \frac{d}{dx}(bx^{-40}) \] \[ = 41ax^{40} - 40bx^{-41} \] **Hint for Step 1:** Remember that the derivative of \( x^n \) is \( nx^{n-1} \). --- **Step 2: Find \( f''(x) \)** Now, differentiate \( f'(x) \): \[ f''(x) = \frac{d}{dx}(41ax^{40}) + \frac{d}{dx}(-40bx^{-41}) \] \[ = 41 \cdot 40ax^{39} + 40 \cdot 41bx^{-42} \] \[ = 1640ax^{39} + 1640bx^{-42} \] **Hint for Step 2:** Apply the power rule again for each term. --- **Step 3: Substitute \( f(x) \) and \( f''(x) \) into the equation** Now, we need to find \( \frac{f''(x)}{f(x)} \): \[ \frac{f''(x)}{f(x)} = \frac{1640ax^{39} + 1640bx^{-42}}{ax^{41} + bx^{-40}} \] **Hint for Step 3:** Factor out common terms from the numerator and denominator. --- **Step 4: Simplify the expression** Multiply numerator and denominator by \( x^{42} \) to eliminate negative powers: \[ = \frac{1640a x^{81} + 1640b}{a x^{83} + b x^2} \] Now, simplifying further leads to: \[ = \frac{1640(a x^{81} + b)}{a x^{83} + b x^2} \] This does not simplify to \( 1640x^2 \) for all values of \( a \) and \( b \). Thus, the first statement is **false**. **Final Conclusion for Statement I:** False. --- ### Statement II: We need to check if \[ \frac{d}{dx}\left(\tan^{-1}\left(\frac{2x}{1-x^2}\right)\right) = \frac{1}{1+x^2} \] **Step 1: Use the identity for \( \tan^{-1} \)** Recall that \[ \tan^{-1}\left(\frac{2x}{1-x^2}\right) = 2\tan^{-1}(x) \] **Hint for Step 1:** Use trigonometric identities to simplify the expression. --- **Step 2: Differentiate \( 2\tan^{-1}(x) \)** Now differentiate: \[ \frac{d}{dx}(2\tan^{-1}(x)) = 2 \cdot \frac{1}{1+x^2} \] **Hint for Step 2:** The derivative of \( \tan^{-1}(x) \) is \( \frac{1}{1+x^2} \). --- **Step 3: Compare with the original statement** Thus, \[ \frac{d}{dx}\left(\tan^{-1}\left(\frac{2x}{1-x^2}\right)\right) = \frac{2}{1+x^2} \] This is not equal to \( \frac{1}{1+x^2} \), so the second statement is also **false**. **Final Conclusion for Statement II:** False. --- ### Final Answer: Both statements are false, so the correct option is: **Option C: Neither 1 nor 2 is true.** ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[tan^(-1)((a-x)/(1+ax))] is equal to

If d/(dx)(tan^(-1)(2^(x+1)/(1-4^(x))))=a^(x+1)/(1+b^(x))loga , find the value of a and b.

Differentiate tan^(-1)(( sqrt(1+x^(2))-1)/(x))

Differentiate tan^(-1)((2x)/(1-x^2))+cos^(-1)((1-x^2)/(1+x^2)) with respect to x .

int _( 0) ^(sqrt3) ((1)/(2) (d)/(dx)(tan ^(-1) ""(2x)/(1- x^(2))))dx equals to:

Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - tan^(-1)((2x)/(1 -x^(2))) , then which of the following statements (s) is (are) correct ?

Differentiate sin^(-1)((2x)/(1+x^2)) with respect to tan^(-1)((2x)/(1-x^2)),

Differentiate tan^(-1)((2x)/(1-x^(2))) w.r.t. sin^(-1)((2x)/(1+x^(2))).

Differentiate w.r.t x tan^-1((2x)/(1+15x^2))

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to x

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Chapter Test
  1. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  2. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  3. y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]

    Text Solution

    |

  4. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  5. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  6. If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

    Text Solution

    |

  7. Let a function f:RtoR satisfy the equation f(x+y)=f(x)=f(Y)AAx, yepsil...

    Text Solution

    |

  8. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  9. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  10. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |

  11. If y=logu|cos4x|+|sinx|,where u=sec2x find (dy)/(dx) at x=-pi/6

    Text Solution

    |

  12. If f(4)= 4, f'(4) =1 then lim(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is ...

    Text Solution

    |

  13. if 2x^2-3xy+y^2+x+2y-8=0 then (dy)/(dx)

    Text Solution

    |

  14. If y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)tan^(-1)x," then "(dy)/(dx)=

    Text Solution

    |

  15. If x=costheta,y=sin5theta," then "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx...

    Text Solution

    |

  16. If f : R - R is an even function which is twice differentiable on R an...

    Text Solution

    |

  17. Observe the following statements: "I. If "f(x)=ax^(41)+bx^(-40)," ...

    Text Solution

    |

  18. If x=e^tsint,y=e^tcost then (d^2y)/(dx^2) at x=pi is

    Text Solution

    |

  19. The value of (dy)/(dx) at x=(pi)/(2), where y is given by y=x^(sinx)...

    Text Solution

    |

  20. If 2^(x)+2^(y)=2^(x+y) then (dy)/(dx)is equal to

    Text Solution

    |