Home
Class 12
MATHS
The number of possible tangents which ca...

The number of possible tangents which can be drawn to the curve `4x^2-9y^2=36 ,` which are perpendicular to the straight line `5x+2y-10=0` , is zero (b) 1 (c) 2 (d) 4

A

`5(y-3)=2(x-(sqrt(117))/(2)) `

B

` 2x-5y+10-2sqrt(18)=0 `

C

` 2x-5y-10-2sqrt(18)=0 `

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
D

We have,
` 4x^(2)-9y^(2)=36 rArr 8x-18y(dy)/(dx)=0 rArr (dy)/(dx)=(4x)/(9y) `
` therefore " Slope of the tangent " =(4x)/(9y) `
For this tangent to be perpendicular to the straight line ` 5x+2y-10=0, ` we must have
`(4x)/(9y)xx (-(5)/(2))=-1 rArr y=(10x)/(9). `
Putting this value of y in `4x^(2)-9y^(2)=36, ` we get `-64x^(2)=324, ` which does not have real roots. Hence, at no point on the given curve can the tangent be perpendicular to the given line.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TANGENTS AND NORMALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|42 Videos
  • TANGENTS AND NORMALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|25 Videos
  • TANGENTS AND NORMALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|25 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

The number of possible tangents which can be drawn to the curve 4x^2-9y^2=36 , which are perpendicular to the straight line 5x+2y-10=0 , is (A) 0 (B) 1 (C) 2 (D) 4

Find the points on the curve 4x^2+9y^2=1 , where the tangents are perpendicular to the line 2y+x=0

Find the points on the curve 4x^2+9y^2=1 , where the tangents are perpendicular to the line 2y+x=0 .

The equation of the tangents to 2x^(2)+3y^(2) =36 which are parallel to the straight line x + 2y-10 =0, are

Find the equation of tangents to the ellipse 4x^(2)+5y^(2)=20 which are perpendicular to the line 3x+2y-5=0

Find the equations of tangents to the circle x^2+y^2-22 x-4y+25=0 which are perpendicular to the line 5x+12 y+8=0

Number of points from where perpendicular tangents can be drawn to the curve x^2/16-y^2/25=1 is

Find the equation of the tangent line to the curve y=x^2-2x+7 which is perpendicular to the line 5y-15 x=13 .

Find the equation of the tagent to the hyperbola x^(2)-4y^(2)=36 which is perpendicular to the line x-y+4=0 .

Find the equations of the tangents to the circle x^2+y^2-6x+4y=12 which are parallel to the straight line 4x+3y+5=0