Home
Class 12
MATHS
If the function f(x)=cos|x|-2a x+b incre...

If the function `f(x)=cos|x|-2a x+b` increases along the entire number scale, then (a) `a=b` (b) `a=1/2b` (c) `alt=-1/2` (d) `a >-3/2`

A

`a le b `

B

`a=b/2`

C

`a lt - 1/2`

D

`a gt - 3/2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|36 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=2log(x-2)-x^2+4x+1 increases on the interval (a) (1,\ 2) (b) (2,\ 3) (c) (1,\ 3) (d) (2,\ 4)

If the function f(x)=2tanx+(2a+1)(log)_e|secx|+(a-2)x is increasing on R , then (a) a in (1//2,\ oo) (b) a in (-1//2,\ 1//2) (c) a=1//2 (d) a in R

is The function f(x)=(x^2-1)|x^2-3x+2|+cos(|x|) is differentiable not differentiable at (a)-1 (b)0 (c)1 (d)2

If a and b are roots of the equation x^2+a x+b=0 , then a+b= (a) 1 (b) 2 (c) -2 (d) -1

If x+2 is a factor of x^2+a x+2b and a+b=4 , then (a) a=1,\ b=3 (b) a=3,\ b=1 (c) a=-1,\ b=5 (d) a=5,\ b=-1

Of f(x)=p x^2+q x+r is a quadratic expression such that [a^2 a1 b^2 b1 c^2 c1][f(0) f(1) f(-1)]=[2a+1 2b+1 2c+1] for three unequal numbers a ,b ,c then (a) p=3/2 (b) q=-1/2 (c) r=1 (d) p+q+r=2

If the polynomial f(x)=a x^3+b x-c is divisible by the polynomial g(x)=x^2+b x+c , then a b= (a) 1 (b) 1/c (c) -1 (d) -1/c

If the function f(x)={{:(,-x,x lt 1),(,a+cos^(-1)(x+b),1 le xle 2):} is differentiable at x=1, then (a)/(b) is equal to

Let a and b be the number of solutions and sum of solutions of (2x)/(x-1)-|x|=(x^2)/(|x-1|) respectively, then a=3 (b) b=1 (c) b=2 (d) a=2

Let X={a_1, a_2, ,a_6}a n dY={b_1, b_2,b_3}dot The number of functions f from xtoy such that it is onto and there are exactly three elements x in X such that f(x)=b_1 is 75 (b) 90 (c) 100 (d) 120