Home
Class 12
MATHS
If f(x)= kx-sin x is monotonically incre...

If f(x)= kx-sin x is monotonically increasing then

A

`k gt 1`

B

` k gt -1`

C

` k lt 1`

D

`k lt - 1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|36 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Function f(x)=x^3-27 x+5 is monotonically increasing when (a) x 3 (c) xlt=-3 (d) |x|geq3

Function f(x)=|x|-|x-1| is monotonically increasing when (a) x 1 (c) x<1 (d) 0 < x < 1

Function f(x)=|x|-|x-1| is monotonically increasing when (a) x 1 (c) x<1 (d) x in (0,1)

Let f(x) be and even function in R. If f(x) is monotonically increasing in [2, 6], then

If f(x)=k x^3-9x^2+9x+3 monotonically increasing in R , then

If f(x) is monotonically increasing function for all x in R, such that f''(x)gt0andf^(-1)(x) exists, then prove that (f^(-1)(x_(1))+f^(-1)(x_(2))+f^(-1)(x_(3)))/(3)lt((f^(-1)(x_(1)+x_(2)+x_3))/(3))

If f(x)=k x^3-9x^2+9x+3 monotonically increasing in R , then (a) k<3 (b) klt=2 (c) kgeq3 (d) none of these

If f(x)=k x^3-9x^2+9x+3 monotonically increasing in R , then (a) k<3 (b) klt=2 (c) kgeq3 (d) none of these

f(x)=(x-2)|x-3| is monotonically increasing in (a) (-oo,5/2)uu(3,oo) (b) (5/2,oo) (c) (2,oo) (d) (-oo,3)

Let f(x)=|x^2-3x-4|,-1lt=xlt=4 Then f(x) is monotonically increasing in [-1,3/2] f(x) monotonically decreasing in (3/2,4) the maximum value of f(x)i s(25)/4 the minimum value of f(x) is 0