Home
Class 12
MATHS
If f(x)=x-(1)/(x), x ne 0 then f(x^(2)) ...

If `f(x)=x-(1)/(x), x ne 0` then `f(x^(2))` equals.

A

f(x)+f(-x)

B

`f(x)f(-x)`

C

`f(x)-f(-x)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(x^2) \) given that \( f(x) = x - \frac{1}{x} \) for \( x \neq 0 \). ### Step-by-Step Solution: 1. **Identify the function**: We have \( f(x) = x - \frac{1}{x} \). 2. **Substitute \( x^2 \) into the function**: We need to find \( f(x^2) \). \[ f(x^2) = x^2 - \frac{1}{x^2} \] 3. **Simplify the expression**: The expression \( x^2 - \frac{1}{x^2} \) can be rewritten. We can factor it using the difference of squares. \[ x^2 - \frac{1}{x^2} = \left( x + \frac{1}{x} \right) \left( x - \frac{1}{x} \right) \] 4. **Recognize that \( x - \frac{1}{x} \) is \( f(x) \)**: From the original function definition, we know that \( f(x) = x - \frac{1}{x} \). \[ f(x) = x - \frac{1}{x} \] 5. **Substitute back into the factored form**: Therefore, we can express \( f(x^2) \) in terms of \( f(x) \): \[ f(x^2) = \left( x + \frac{1}{x} \right) f(x) \] 6. **Final expression**: Thus, the final expression for \( f(x^2) \) is: \[ f(x^2) = \left( x + \frac{1}{x} \right) \left( x - \frac{1}{x} \right) \] ### Conclusion: The final result for \( f(x^2) \) is: \[ f(x^2) = x^2 - \frac{1}{x^2} \]
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

If f(x)-3f((1)/(x))=2x+3(x ne 0) then f(3) is equal to

If f(x)=(x+1)/(x-1) , x ne 1 , then f^(-1)(x) is

Let f(x)=(sin x)/(x), x ne 0 . Then f(x) can be continous at x=0, if

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))) , then

If y = f(x) = (x+2)/(x-1) , x ne1 , then show that x = f(y) .

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Exercise
  1. Consider the function y=f(x) satisfying the condition f(x+(1)/(x))=x^(...

    Text Solution

    |

  2. If f(x+2y,x-2y)=xy, then f(x, y) equals

    Text Solution

    |

  3. If f(x)=x-(1)/(x), x ne 0 then f(x^(2)) equals.

    Text Solution

    |

  4. A polynomial function f(x) satisfies the condition f(x)f((1)/(x))=f...

    Text Solution

    |

  5. The function f(x) = "max"{(1-x), (1+x), 2}, x in (-oo, oo) is

    Text Solution

    |

  6. If f(x)=x^(3)-x and phi (x)= sin 2x , then

    Text Solution

    |

  7. Let f(x)=min{x,x^2}, for every x in R. Then

    Text Solution

    |

  8. The domain of the function f(x) given by f(x)=(sqrt(4-x^(2)))/(sin^(-1...

    Text Solution

    |

  9. The domain of the function f(x)=sqrt({(-log0.3(x-1))/(-x^2+3x+18)})...

    Text Solution

    |

  10. The domain of the function f(x)=[log(10)((5x-x^(2))/(4))]^(1//2) is

    Text Solution

    |

  11. If f : R -> R is defined by f(x) = 1 /(2-cos3x) for each x in R then t...

    Text Solution

    |

  12. If the function f: RvecA given by f(x)=(x^2)/(x^2+1) is surjection, th...

    Text Solution

    |

  13. The domain of definition of the function f(x)=(1)/(sqrt(|x|+x)) is

    Text Solution

    |

  14. The set of values of x for which the function f(x)=(1)/(x)+2^(sin^(...

    Text Solution

    |

  15. The function f(x)=log(10)(x+sqrt(x^(2))+1) is

    Text Solution

    |

  16. The function f(x)=cos (log (x+sqrt(x^(2)+1))) is :

    Text Solution

    |

  17. f(x)=sqrt(sin^(- 1)(log2x)) Find the domain

    Text Solution

    |

  18. The function f(x)=sqrt(cos (sin x))+sin^(-1) ((1+x^(2))/(2x)) is defin...

    Text Solution

    |

  19. The function f(x)=|cos| is periodic with period

    Text Solution

    |

  20. If a funciton f(x) is defined for x in [0,1], then the function f(2x+...

    Text Solution

    |