Home
Class 12
MATHS
If f(x)=x^(3)-x and phi (x)= sin 2x , th...

If `f(x)=x^(3)-x and phi (x)= sin 2x `, then

A

`phi(f(2))=sin2`

B

`phi(f(1))=1`

C

`f(phi(pi//12))=-(3)/(8)`

D

`f(f(1))=2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the functions \( f(x) = x^3 - x \) and \( \phi(x) = \sin(2x) \) for specific values and combinations. Let's go through the steps systematically. ### Step 1: Evaluate \( f(\phi(x)) \) We start by substituting \( \phi(x) \) into \( f(x) \): \[ f(\phi(x)) = f(\sin(2x)) = (\sin(2x))^3 - \sin(2x) \] ### Step 2: Simplify \( f(\phi(x)) \) Now we simplify the expression we obtained: \[ f(\phi(x)) = \sin^3(2x) - \sin(2x) \] ### Step 3: Evaluate \( f(\phi(2)) \) Next, we need to evaluate \( f(\phi(2)) \): 1. Calculate \( \phi(2) \): \[ \phi(2) = \sin(2 \cdot 2) = \sin(4) \] 2. Now substitute \( \phi(2) \) into \( f \): \[ f(\phi(2)) = f(\sin(4)) = (\sin(4))^3 - \sin(4) \] ### Step 4: Evaluate \( f(\phi(1)) \) Next, we evaluate \( f(\phi(1)) \): 1. Calculate \( \phi(1) \): \[ \phi(1) = \sin(2 \cdot 1) = \sin(2) \] 2. Substitute \( \phi(1) \) into \( f \): \[ f(\phi(1)) = f(\sin(2)) = (\sin(2))^3 - \sin(2) \] ### Step 5: Evaluate \( f(\phi(\frac{\pi}{12})) \) Now we evaluate \( f(\phi(\frac{\pi}{12})) \): 1. Calculate \( \phi(\frac{\pi}{12}) \): \[ \phi\left(\frac{\pi}{12}\right) = \sin\left(2 \cdot \frac{\pi}{12}\right) = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] 2. Substitute \( \phi\left(\frac{\pi}{12}\right) \) into \( f \): \[ f\left(\phi\left(\frac{\pi}{12}\right)\right) = f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^3 - \frac{1}{2} = \frac{1}{8} - \frac{1}{2} = \frac{1}{8} - \frac{4}{8} = -\frac{3}{8} \] ### Step 6: Evaluate \( f(f(1)) \) Finally, we evaluate \( f(f(1)) \): 1. Calculate \( f(1) \): \[ f(1) = 1^3 - 1 = 0 \] 2. Substitute \( f(1) \) into \( f \): \[ f(f(1)) = f(0) = 0^3 - 0 = 0 \] ### Summary of Results - \( f(\phi(2)) = (\sin(4))^3 - \sin(4) \) - \( f(\phi(1)) = (\sin(2))^3 - \sin(2) \) - \( f(\phi(\frac{\pi}{12})) = -\frac{3}{8} \) - \( f(f(1)) = 0 \)
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

If f(x)=3 cos x and g(x)=sin^(2)x , the evaluate: (f+g)((pi)/(2))

If f, g : R to R such that f(x) = 3 x^(2) - 2, g (x) = sin (2x) the g of =

If phi (x)=phi '(x) and phi(1)=2 , then phi(3) equals

If f (x) =2x, g (x) =3 sin x -x cos x, then for x in (0, (pi)/(2)):

If f(x)=(x-x_(0)) phi (x) and phi(x) is continuous at x= x_(0) . Then f'(x_(0)) is equal to

Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(x)|=|f(x)|+|phi(x)| are :

If phi (x) is continuous at x= a such that f(x)=(ax-a^2-x^2)phi(x) for all x, then f(x) is

If f '(x) phi (x) (x-2) ^(2). Were phi(2) ne 0 and phi (x) is continuous at x =2 then in the neighbouhood of x =2

Let F(x) =int_(a)^(x^(2)) cos sqrt(t)dt Statement-1: F'(x)=cos x Statement-2: If f(x) =int_(a)^(x) phi(t) dt , then f'(x)= phi (x).

Let f and g be two differentiable functins such that: f (x)=g '(1) sin x+ (g'' (2) -1) x g (x) = x^(2) -f'((pi)/(2)) x+ f'(-(pi)/(2)) If phi (x) =f ^(-1) (x) then phi'((pi)/(2) +1) equals to :

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Exercise
  1. A polynomial function f(x) satisfies the condition f(x)f((1)/(x))=f...

    Text Solution

    |

  2. The function f(x) = "max"{(1-x), (1+x), 2}, x in (-oo, oo) is

    Text Solution

    |

  3. If f(x)=x^(3)-x and phi (x)= sin 2x , then

    Text Solution

    |

  4. Let f(x)=min{x,x^2}, for every x in R. Then

    Text Solution

    |

  5. The domain of the function f(x) given by f(x)=(sqrt(4-x^(2)))/(sin^(-1...

    Text Solution

    |

  6. The domain of the function f(x)=sqrt({(-log0.3(x-1))/(-x^2+3x+18)})...

    Text Solution

    |

  7. The domain of the function f(x)=[log(10)((5x-x^(2))/(4))]^(1//2) is

    Text Solution

    |

  8. If f : R -> R is defined by f(x) = 1 /(2-cos3x) for each x in R then t...

    Text Solution

    |

  9. If the function f: RvecA given by f(x)=(x^2)/(x^2+1) is surjection, th...

    Text Solution

    |

  10. The domain of definition of the function f(x)=(1)/(sqrt(|x|+x)) is

    Text Solution

    |

  11. The set of values of x for which the function f(x)=(1)/(x)+2^(sin^(...

    Text Solution

    |

  12. The function f(x)=log(10)(x+sqrt(x^(2))+1) is

    Text Solution

    |

  13. The function f(x)=cos (log (x+sqrt(x^(2)+1))) is :

    Text Solution

    |

  14. f(x)=sqrt(sin^(- 1)(log2x)) Find the domain

    Text Solution

    |

  15. The function f(x)=sqrt(cos (sin x))+sin^(-1) ((1+x^(2))/(2x)) is defin...

    Text Solution

    |

  16. The function f(x)=|cos| is periodic with period

    Text Solution

    |

  17. If a funciton f(x) is defined for x in [0,1], then the function f(2x+...

    Text Solution

    |

  18. The period of the function f(x)=sin^(4)x+cos^(4)x is:

    Text Solution

    |

  19. Which of the following functions is the inverse of itself? (a) f(x)=(1...

    Text Solution

    |

  20. If f(-x)=-f(x) , then f(x) is

    Text Solution

    |