Home
Class 12
MATHS
If f(x)=a^x, which of the following equa...

If `f(x)=a^x,` which of the following equalities do not hold ? (i) `f(x+2)-2f(x+1)+f(x)=(a-1)^2f(x)` (ii) `f(-x)f(x)-1=0` (iii) `f(x+y)=f(x)f(y)` (iv) `f(x+3)-2f(x+2)+f(x+1)=(a-2)^2f(x+1)`

A

`f(x+2)-2f(x+1)+f(x)=(a-1)^(2)f(x)`

B

`f(-x)f(x)+1=0`

C

`f(x+y)=f(x)+f(y)`

D

`f(x+3)-2f(x+2)+f(x+1)=(a-2)^(2)f(x+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given equalities do not hold for the function \( f(x) = a^x \), we will evaluate each equality step by step. ### Step 1: Evaluate the first equality **Equality (i):** \[ f(x+2) - 2f(x+1) + f(x) = (a-1)^2 f(x) \] **Left-hand side:** \[ f(x+2) = a^{x+2} = a^2 a^x \] \[ f(x+1) = a^{x+1} = a a^x \] \[ f(x) = a^x \] Now substituting these into the left-hand side: \[ a^2 a^x - 2(a a^x) + a^x = a^x (a^2 - 2a + 1) \] Factoring the quadratic: \[ a^x ((a-1)^2) = (a-1)^2 f(x) \] **Conclusion:** The first equality holds true. ### Step 2: Evaluate the second equality **Equality (ii):** \[ f(-x)f(x) - 1 = 0 \] **Left-hand side:** \[ f(-x) = a^{-x} = \frac{1}{a^x} \] Now substituting into the left-hand side: \[ f(-x)f(x) = \left(\frac{1}{a^x}\right)(a^x) = 1 \] Thus: \[ 1 - 1 = 0 \] **Conclusion:** The second equality holds true. ### Step 3: Evaluate the third equality **Equality (iii):** \[ f(x+y) = f(x)f(y) \] **Left-hand side:** \[ f(x+y) = a^{x+y} \] **Right-hand side:** \[ f(x)f(y) = a^x a^y = a^{x+y} \] **Conclusion:** The third equality holds true. ### Step 4: Evaluate the fourth equality **Equality (iv):** \[ f(x+3) - 2f(x+2) + f(x+1) = (a-2)^2 f(x+1) \] **Left-hand side:** \[ f(x+3) = a^{x+3} = a^3 a^x \] \[ f(x+2) = a^{x+2} = a^2 a^x \] \[ f(x+1) = a^{x+1} = a a^x \] Now substituting these into the left-hand side: \[ a^3 a^x - 2(a^2 a^x) + (a a^x) = a^x (a^3 - 2a^2 + a) \] Factoring out \( a^x \): \[ = a^x (a^3 - 2a^2 + a) = a^x (a^2(a - 2) + a) = a^x (a^2 - 2a + 2) \] **Right-hand side:** \[ (a-2)^2 f(x+1) = (a-2)^2 (a a^x) = a^x (a-2)^2 a \] Now, we need to check if: \[ a^x (a^3 - 2a^2 + a) = a^x (a-2)^2 a \] This simplifies to: \[ a^3 - 2a^2 + a = (a-2)^2 a \] Expanding the right-hand side: \[ = a(a^2 - 4a + 4) = a^3 - 4a^2 + 4a \] Setting the two sides equal: \[ a^3 - 2a^2 + a = a^3 - 4a^2 + 4a \] Simplifying gives: \[ 2a^2 - 3a = 0 \] Factoring out \( a \): \[ a(2a - 3) = 0 \] This holds true only for \( a = 0 \) or \( a = \frac{3}{2} \), thus it does not hold for all \( a \). ### Conclusion The equality that does not hold for all values of \( a \) is: **(iv)** \( f(x+3) - 2f(x+2) + f(x+1) = (a-2)^2 f(x+1) \)
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

If f(x)="cos"^(2)x+"sec"^(2)x , then (i) f(x)lt1 (ii) f(x)=1 (iii) 2ltf(x)lt1 (iv) f(x)ge2

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

Given the graph of y=f(x) . Draw the graphs of the followin. (a) y=f(1-x) (b) y=-2f(x) (c) y=f(2x) (d) y=1-f(x)

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If (x)=(a^(x)-1)/(a^(x)+1) , choose the correct statement. I. f(-x)=f(x) II. F(-x)=-f(x) III. F(2x)=2f(x)

The graph of y = f(x) is as shown in the following figure. Find the following values (i) f(-3)" "(ii) f(-2)" "(iii) f(0) (iv) f(2)" "(v) f(3)" "(vi) lim_(x to -3) f(x) (vii) lim_(x to 0) f(x)" "(viii)lim_(x to 2) f(x)" "(ix) lim_(x to 3) f(x) (x) lim_(x to 2^(-)) f(x)" "(xi)lim_(x to -2^(+)) f (x)" "(x ii)lim_(x to 0^(-)) f(x) (x iii) lim_(x to 0^(+)) f(x)

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Exercise
  1. If D is the set of all real x such that 1-e^((1)/(x)-1) is positive , ...

    Text Solution

    |

  2. Which of the following functions has period 2pi ?

    Text Solution

    |

  3. If f(x)=a^x, which of the following equalities do not hold ? (i) f(...

    Text Solution

    |

  4. The interval in which the function y = f(x) = (x-1)/(x^2-3x+3) transfo...

    Text Solution

    |

  5. Let f(x)=|x-1|. Then,

    Text Solution

    |

  6. The function f: C -> C defined by f(x) = (ax+b)/(cx+d) for x in C wher...

    Text Solution

    |

  7. If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to ...

    Text Solution

    |

  8. (1+2(x+4)^(- 0. 5))/(2-(x+4)^(0. 5))+5(x+4)^(0. 5) Find the domain of...

    Text Solution

    |

  9. Which of the following functions is not an are not an injective map(s)...

    Text Solution

    |

  10. The maximum possible domain and thecorresponding range of f(x)=(-1)^x

    Text Solution

    |

  11. If f(x)={x ,xi sr a t ion a l1-x ,xi si r r a t ion a l ,t h e nf(f(x)...

    Text Solution

    |

  12. The function f(x)=(sin^4x+cos^4x)/(x+tanx) is :

    Text Solution

    |

  13. The function f(x)=(sec^(4)x+cosec^(4)x)/(x^(3)+x^(4)cotx), is

    Text Solution

    |

  14. Let f (x) =x and g (x) = |x| for all . Then the function satisfying ...

    Text Solution

    |

  15. Let f : R to R be a function defined by f(x)=(|x|^(3)+|x|)/(1+x^(2))...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. If f(x)=(ax^(2)+b)^(3), the function g such that f(g(x))=g(f(x)), is g...

    Text Solution

    |

  18. If a function f:[2,oo)toR is defined by f(x)=x^(2)-4x+5, then the rang...

    Text Solution

    |

  19. The domain of f(x)=ln(a x^3+(a+b)x^2+(b+c)x+c), where a >0, b^2-4ac=0,...

    Text Solution

    |

  20. If f(x)=sin(logx) then f(xy)+f(x/y)-2f(x)cos(logy)= (A) cos(logx) ...

    Text Solution

    |