Home
Class 12
MATHS
Let f(x)=|x-1|. Then,...

Let `f(x)=|x-1|`. Then,

A

`f(x^(2))=[f(x)]^(2)`

B

`f(|x|)=|f(x)|`

C

`f(x+y)=f(x)+f(y)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = |x - 1| \) and evaluate the given options one by one. ### Step 1: Evaluate Option A **Option A:** \( f(x^2) = f(x)^2 \) 1. Calculate \( f(x^2) \): \[ f(x^2) = |x^2 - 1| \] 2. Calculate \( f(x)^2 \): \[ f(x) = |x - 1| \implies f(x)^2 = (|x - 1|)^2 = (x - 1)^2 \] 3. Now we need to check if \( |x^2 - 1| = (x - 1)^2 \) for all \( x \). - For \( x = 2 \): \[ f(2^2) = |4 - 1| = 3 \] \[ f(2)^2 = (|2 - 1|)^2 = 1^2 = 1 \] They are not equal. - Thus, \( f(x^2) \neq f(x)^2 \). **Conclusion for Option A:** False ### Step 2: Evaluate Option B **Option B:** \( f(|x|) = |f(x)| \) 1. Calculate \( f(|x|) \): \[ f(|x|) = ||x| - 1| \] 2. Calculate \( |f(x)| \): \[ f(x) = |x - 1| \implies |f(x)| = ||x - 1| \] 3. Check if \( ||x| - 1| = ||x - 1| \). - For \( x = 1 \): \[ f(|1|) = |1 - 1| = 0 \] \[ |f(1)| = |1 - 1| = 0 \] They are equal. - For \( x = -1 \): \[ f(|-1|) = |1 - 1| = 0 \] \[ |f(-1)| = |-1 - 1| = 2 \] They are not equal. **Conclusion for Option B:** False ### Step 3: Evaluate Option C **Option C:** \( f(x + y) = f(x) + f(y) \) 1. Calculate \( f(x + y) \): \[ f(x + y) = |(x + y) - 1| = |x + y - 1| \] 2. Calculate \( f(x) + f(y) \): \[ f(x) + f(y) = |x - 1| + |y - 1| \] 3. Check if \( |x + y - 1| = |x - 1| + |y - 1| \). - For \( x = 1 \) and \( y = 1 \): \[ f(1 + 1) = |2 - 1| = 1 \] \[ f(1) + f(1) = 0 + 0 = 0 \] They are not equal. **Conclusion for Option C:** False ### Final Conclusion Since all options A, B, and C are false, the correct answer is: **Option D:** None of the above.
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x) = ||x|-1|, then points where, f(x) is not differentiable is/are

Let f(x)=|x|+|x-1|, then

Let f(x)=x-(1)/(x) then which one of the following statements is true?

Let f(x)={1, x =1 . Then, f is (a) continuous at x=-1 (b) differentiable at x=-1 (c) everywhere continuous (d) everywhere differentiable

Let f(x)=log_(e)|x-1|, x ne 1 , then the value of f'((1)/(2)) is

Let f(x) = |x-1|+|x+1| Discuss the continuity and differentiability of the function.

Let f(x)=2x+1. AA x in R , then the solution of the equation f(x)=f^(-1)(x) is

Let f(x) = |x - 1|([x] - [-x]) , then which of the following statement(s) is/are correct. (where [.] denotes greatest integer function.)

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Exercise
  1. If f(x)=a^x, which of the following equalities do not hold ? (i) f(...

    Text Solution

    |

  2. The interval in which the function y = f(x) = (x-1)/(x^2-3x+3) transfo...

    Text Solution

    |

  3. Let f(x)=|x-1|. Then,

    Text Solution

    |

  4. The function f: C -> C defined by f(x) = (ax+b)/(cx+d) for x in C wher...

    Text Solution

    |

  5. If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to ...

    Text Solution

    |

  6. (1+2(x+4)^(- 0. 5))/(2-(x+4)^(0. 5))+5(x+4)^(0. 5) Find the domain of...

    Text Solution

    |

  7. Which of the following functions is not an are not an injective map(s)...

    Text Solution

    |

  8. The maximum possible domain and thecorresponding range of f(x)=(-1)^x

    Text Solution

    |

  9. If f(x)={x ,xi sr a t ion a l1-x ,xi si r r a t ion a l ,t h e nf(f(x)...

    Text Solution

    |

  10. The function f(x)=(sin^4x+cos^4x)/(x+tanx) is :

    Text Solution

    |

  11. The function f(x)=(sec^(4)x+cosec^(4)x)/(x^(3)+x^(4)cotx), is

    Text Solution

    |

  12. Let f (x) =x and g (x) = |x| for all . Then the function satisfying ...

    Text Solution

    |

  13. Let f : R to R be a function defined by f(x)=(|x|^(3)+|x|)/(1+x^(2))...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. If f(x)=(ax^(2)+b)^(3), the function g such that f(g(x))=g(f(x)), is g...

    Text Solution

    |

  16. If a function f:[2,oo)toR is defined by f(x)=x^(2)-4x+5, then the rang...

    Text Solution

    |

  17. The domain of f(x)=ln(a x^3+(a+b)x^2+(b+c)x+c), where a >0, b^2-4ac=0,...

    Text Solution

    |

  18. If f(x)=sin(logx) then f(xy)+f(x/y)-2f(x)cos(logy)= (A) cos(logx) ...

    Text Solution

    |

  19. The domain of sin^(-1)[log(3)((x)/(3))] is :

    Text Solution

    |

  20. The function f(x)=(sec^(-1)x)/(sqrt(x-[x])) where [x] denotes the gre...

    Text Solution

    |