Home
Class 12
MATHS
The domain of definition of the function...

The domain of definition of the function `f(x)=sin^(-1)((4)/(3+2 cos x))`, is

A

`[2npi-(pi)/(3),2 npi+(pi)/(3)], n in Z`

B

`[0,2npi+(pi)/(6)], n in Z `

C

`[2npi-(pi)/(6),0], n in Z`

D

`(2n pi-(pi)/(6), 2n pi+(pi)/(6)), n in Z `

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sin^{-1}\left(\frac{4}{3 + 2 \cos x}\right) \), we need to ensure that the argument of the inverse sine function is valid. The inverse sine function \( \sin^{-1}(a) \) is defined for \( -1 \leq a \leq 1 \). Therefore, we need to solve the following inequalities: 1. \( -1 \leq \frac{4}{3 + 2 \cos x} \leq 1 \) ### Step 1: Solve the first inequality \( \frac{4}{3 + 2 \cos x} \geq -1 \) Starting with the first inequality: \[ \frac{4}{3 + 2 \cos x} \geq -1 \] Multiplying both sides by \( 3 + 2 \cos x \) (noting that \( 3 + 2 \cos x > 0 \) for all \( x \) since \( \cos x \) ranges from -1 to 1): \[ 4 \geq -1(3 + 2 \cos x) \] This simplifies to: \[ 4 \geq -3 - 2 \cos x \] Rearranging gives: \[ 2 \cos x \geq -7 \quad \Rightarrow \quad \cos x \geq -\frac{7}{2} \] Since \( \cos x \) is always between -1 and 1, this inequality is satisfied for all \( x \). ### Step 2: Solve the second inequality \( \frac{4}{3 + 2 \cos x} \leq 1 \) Now, we solve the second inequality: \[ \frac{4}{3 + 2 \cos x} \leq 1 \] Again, multiplying both sides by \( 3 + 2 \cos x \): \[ 4 \leq 3 + 2 \cos x \] Rearranging gives: \[ 2 \cos x \geq 1 \quad \Rightarrow \quad \cos x \geq \frac{1}{2} \] ### Step 3: Determine the values of \( x \) for \( \cos x \geq \frac{1}{2} \) The cosine function is equal to \( \frac{1}{2} \) at: \[ x = \frac{\pi}{3} + 2n\pi \quad \text{and} \quad x = -\frac{\pi}{3} + 2n\pi \quad (n \in \mathbb{Z}) \] Thus, \( \cos x \geq \frac{1}{2} \) occurs in the intervals: \[ x \in [2n\pi - \frac{\pi}{3}, 2n\pi + \frac{\pi}{3}] \quad (n \in \mathbb{Z}) \] ### Final Domain The domain of the function \( f(x) \) is therefore: \[ \text{Domain of } f(x) = [2n\pi - \frac{\pi}{3}, 2n\pi + \frac{\pi}{3}] \quad (n \in \mathbb{Z}) \]
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to

Statement-1: The domain of definition of the function f(x)=e^(2x)+cos^(-1)((x)/(2)-1) , is (0,1) cup (1,2) cup (2,3) cup (3,4) Statement:- The domain of cos^(-1)""((x)/(2)-1) is [0,4] .

The domain of definition of the function f(x)= sin^(-1){log_(2)((x^(2))/(2))} , is

The domain of definition of the function f(x)=(7- x)P_(x-3) , is

The domain of definition of the function f(x)=(1)/(sqrt(|x|+x)) is

The domain of definition of the function f(x)=sin^(-1)((x-3)/(2))-log_(10)(4-x) , is

The domain of definition of the function f(X)=x^((1)/(log_(10)x)) , is

The domain of definition of the function f(X)=x^(log_(10)x , is

The domain of definition of the functions f(x) = log_(e)(x-[x]) , is

The domain of definition of the function f(x) = sqrt(log_(x^(2)-1)) x is

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Exercise
  1. The domain of the function f(x)=(1)/(sqrt(|cosx|+cosx)) is

    Text Solution

    |

  2. If the function f(x)=log(x-2)-log(x-3) and g(x)=log((x-2)/(x-3)) are i...

    Text Solution

    |

  3. The domain of definition of the function f(x)=sin^(-1)((4)/(3+2 cos x)...

    Text Solution

    |

  4. The domain of the function f(x)=cos^(-1)[secx], where [x] denotes the ...

    Text Solution

    |

  5. Let f be a real vlaued fuction with domain R such that f(x+1)+f(x-1)=s...

    Text Solution

    |

  6. Let f be a real valued function with domain R satisfying f(x + k) =1+[...

    Text Solution

    |

  7. The function f(x) given by f(x)=(sin 8x cos x-sin6x cos 3x)/(cos x cos...

    Text Solution

    |

  8. If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and ...

    Text Solution

    |

  9. Let f(x)=|x-2|+|x-3|+|x-4| and g(x)=f(x+1). Then :

    Text Solution

    |

  10. If T(1) is the period of the function f(x)=e^(3(x-[x])) and T(2) is th...

    Text Solution

    |

  11. Find the range of f(x)=sqrt(cos(sinx))+sqrt(sin(cosx)).

    Text Solution

    |

  12. Find the domain of the function: f(x)=(sin^(-1)(x-3))/(sqrt(9-x^2))

    Text Solution

    |

  13. If f: RvecR and g: RvecR are defined by f(x)=2x+3a n dg(x)=x^2+7, then...

    Text Solution

    |

  14. Suppose f:[-2,2] to R is defined by f(x)={{:(-1 " for " -2 le x le 0...

    Text Solution

    |

  15. If f:R->R and g:R->R is given by f(x) =|x| and g(x)=[x] for each x in ...

    Text Solution

    |

  16. If a , b are two fixed positive integers such that f(a+x)=b+[b^3+1-3b^...

    Text Solution

    |

  17. The domain of the function f(x)=(log)(3+x)(x^2-1) is (-3,-1)uu(1,oo) ...

    Text Solution

    |

  18. Period of f(x)=sin3x cos[3x]-cos3x sin [3x] (where [ ] denotes the gre...

    Text Solution

    |

  19. Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)). Then,

    Text Solution

    |

  20. Domain of (sqrt(x^(2)-4x+3)+1) log(5)""((x)/(5))+(1)/(x)(sqrt(8x-2x^(2...

    Text Solution

    |