Home
Class 12
MATHS
Let f be a real valued function with dom...

Let `f` be a real valued function with domain R satisfying `f(x + k) =1+[(2-5f(x) + 10{f(x)}^2 -10{f(x)}^3 +5{f(x)}^4 -{f(x)}^5]` for all real `x` and some positive constant `k`, then the period of the function f(x)

A

a periodic function with period ` lambda `

B

a periodic function with period ` 2 lambda ` .

C

not a periodic function

D

a periodic function with indeterminate period.

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a real valued periodic function with domain R such that f(x+p)=1+[2-3f(x)+3(f(x))^(2)-(f(x))^(3)]^(1//3) hold good for all x in R and some positive constant p, then the periodic of f(x) is

Let f be a real valued function defined by f(x)=x^2+1. Find f'(2) .

Let y=f(x) be a real valued function satisfying xdy/dx = x^2 + y-2 , f(1)=1 then f(3) equal

Let f be a real vlaued fuction with domain R such that f(x+1)+f(x-1)=sqrt(2)f(x) for all x in R , then ,

Let f be a real-valued function defined by f(x) = 3x^(2) + 2x + 5 Find f'(1).

Let f(x) be a real valued function defined for all xge1 , satistying f(1)=1 and f'(x)=1/(x^(2)+f(x)) , then lim_(xtooo)f(x)

Find the period of the real-valued function satisfying f(x)+f(x+4)=f(x+2)+f(x+6).

If f is a real function, find the domain of f(x)=10^(-x)

If f is a real function, find the domain of f(x)=(1)/(log|x|)

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Exercise
  1. The domain of the function f(x)=cos^(-1)[secx], where [x] denotes the ...

    Text Solution

    |

  2. Let f be a real vlaued fuction with domain R such that f(x+1)+f(x-1)=s...

    Text Solution

    |

  3. Let f be a real valued function with domain R satisfying f(x + k) =1+[...

    Text Solution

    |

  4. The function f(x) given by f(x)=(sin 8x cos x-sin6x cos 3x)/(cos x cos...

    Text Solution

    |

  5. If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and ...

    Text Solution

    |

  6. Let f(x)=|x-2|+|x-3|+|x-4| and g(x)=f(x+1). Then :

    Text Solution

    |

  7. If T(1) is the period of the function f(x)=e^(3(x-[x])) and T(2) is th...

    Text Solution

    |

  8. Find the range of f(x)=sqrt(cos(sinx))+sqrt(sin(cosx)).

    Text Solution

    |

  9. Find the domain of the function: f(x)=(sin^(-1)(x-3))/(sqrt(9-x^2))

    Text Solution

    |

  10. If f: RvecR and g: RvecR are defined by f(x)=2x+3a n dg(x)=x^2+7, then...

    Text Solution

    |

  11. Suppose f:[-2,2] to R is defined by f(x)={{:(-1 " for " -2 le x le 0...

    Text Solution

    |

  12. If f:R->R and g:R->R is given by f(x) =|x| and g(x)=[x] for each x in ...

    Text Solution

    |

  13. If a , b are two fixed positive integers such that f(a+x)=b+[b^3+1-3b^...

    Text Solution

    |

  14. The domain of the function f(x)=(log)(3+x)(x^2-1) is (-3,-1)uu(1,oo) ...

    Text Solution

    |

  15. Period of f(x)=sin3x cos[3x]-cos3x sin [3x] (where [ ] denotes the gre...

    Text Solution

    |

  16. Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)). Then,

    Text Solution

    |

  17. Domain of (sqrt(x^(2)-4x+3)+1) log(5)""((x)/(5))+(1)/(x)(sqrt(8x-2x^(2...

    Text Solution

    |

  18. The period of the function f(x)=cos2pi{2x}-sin2 pi {2x}, is ( w...

    Text Solution

    |

  19. If f(n+2)=(1)/(2){f(n+1)+(9)/(f(n))}, n in N and f(n) gt0 for all n i...

    Text Solution

    |

  20. Let f(x)={{:(x^(2) sin ((pix)/(2)),-1 lt x lt 1, x ne 0),(x|x|, x gt 1...

    Text Solution

    |