Home
Class 12
MATHS
The function f(x) given by f(x)=(sin 8x ...

The function f(x) given by `f(x)=(sin 8x cos x-sin6x cos 3x)/(cos x cos2x-sin3x sin 4x)` , is

A

periodic with period `pi`

B

periodic with period `2 pi`

C

periodic with period `pi//2`

D

not periodic

Text Solution

AI Generated Solution

The correct Answer is:
To determine the periodicity of the function \( f(x) = \frac{\sin 8x \cos x - \sin 6x \cos 3x}{\cos x \cos 2x - \sin 3x \sin 4x} \), we will simplify the expression step by step. ### Step 1: Simplifying the Numerator The numerator is \( \sin 8x \cos x - \sin 6x \cos 3x \). We can use the product-to-sum identities: \[ \sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)] \] Applying this to both terms: 1. For \( \sin 8x \cos x \): \[ \sin 8x \cos x = \frac{1}{2} [\sin(9x) + \sin(7x)] \] 2. For \( \sin 6x \cos 3x \): \[ \sin 6x \cos 3x = \frac{1}{2} [\sin(9x) + \sin(3x)] \] Now substituting these into the numerator: \[ \text{Numerator} = \frac{1}{2} [\sin(9x) + \sin(7x)] - \frac{1}{2} [\sin(9x) + \sin(3x)] \] This simplifies to: \[ \text{Numerator} = \frac{1}{2} [\sin(7x) - \sin(3x)] \] ### Step 2: Simplifying the Denominator The denominator is \( \cos x \cos 2x - \sin 3x \sin 4x \). We can also use product-to-sum identities here: 1. For \( \cos x \cos 2x \): \[ \cos x \cos 2x = \frac{1}{2} [\cos(3x) + \cos(-x)] = \frac{1}{2} [\cos(3x) + \cos x] \] 2. For \( \sin 3x \sin 4x \): \[ \sin 3x \sin 4x = \frac{1}{2} [\cos(3x - 4x) - \cos(3x + 4x)] = \frac{1}{2} [\cos(-x) - \cos(7x)] \] Now substituting these into the denominator: \[ \text{Denominator} = \frac{1}{2} [\cos(3x) + \cos x] - \frac{1}{2} [\cos(-x) - \cos(7x)] \] This simplifies to: \[ \text{Denominator} = \frac{1}{2} [\cos(3x) + \cos x - \cos x + \cos(7x)] = \frac{1}{2} [\cos(3x) + \cos(7x)] \] ### Step 3: Final Expression Now substituting the simplified numerator and denominator back into the function: \[ f(x) = \frac{\frac{1}{2} [\sin(7x) - \sin(3x)]}{\frac{1}{2} [\cos(3x) + \cos(7x)]} \] This simplifies to: \[ f(x) = \frac{\sin(7x) - \sin(3x)}{\cos(3x) + \cos(7x)} \] ### Step 4: Determining Periodicity To find the periodicity of \( f(x) \), we need to analyze the components: - The function \( \sin(7x) \) has a period of \( \frac{2\pi}{7} \). - The function \( \sin(3x) \) has a period of \( \frac{2\pi}{3} \). - The function \( \cos(3x) \) has a period of \( \frac{2\pi}{3} \). - The function \( \cos(7x) \) has a period of \( \frac{2\pi}{7} \). The least common multiple (LCM) of these periods will give us the period of \( f(x) \). Calculating the LCM: - The LCM of \( \frac{2\pi}{7} \) and \( \frac{2\pi}{3} \) can be calculated by finding the LCM of the denominators 7 and 3, which is 21. Thus, the LCM of the periods is \( \frac{2\pi \cdot 21}{21} = \frac{2\pi}{1} = 2\pi \). ### Conclusion Thus, the function \( f(x) \) is periodic with a period of \( 2\pi \).
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

The function f(x) = sin ^(-1)(cos x) is

(2 cos x-3 sin x)/(6 cos x+4 sin x)

(sin 7x + sin 3x )/(cos 7x + cos 3x ) = tan 5x.

(1 + sin 2x + cos 2x )/( cos x + sin x ) = 2 cos x

The period of the function f(x)=(sin x+sin 2x+sin 4x+sin 5x)/(cos x+cos 2x+cos 4x+cos 5x) is :

The function f(x) = sin ^(4)x+ cos ^(4)x increases, if

Evaluate int sin x cos x cos2x cos 4x cos 8x dx

( cos 4x + cos 3x + cos 2x )/( sin 4x + sin 3x + sin 2x) = cot3x

What is the fundamental period of f(x) = (sin x+ sin 3x)/(cos x+ cos 3x)

What is the fundamental period of f(x) = (sin x+ sin 3x)/(cos x+ cos 3x)

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Exercise
  1. The domain of the function f(x)=cos^(-1)[secx], where [x] denotes the ...

    Text Solution

    |

  2. Let f be a real vlaued fuction with domain R such that f(x+1)+f(x-1)=s...

    Text Solution

    |

  3. Let f be a real valued function with domain R satisfying f(x + k) =1+[...

    Text Solution

    |

  4. The function f(x) given by f(x)=(sin 8x cos x-sin6x cos 3x)/(cos x cos...

    Text Solution

    |

  5. If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and ...

    Text Solution

    |

  6. Let f(x)=|x-2|+|x-3|+|x-4| and g(x)=f(x+1). Then :

    Text Solution

    |

  7. If T(1) is the period of the function f(x)=e^(3(x-[x])) and T(2) is th...

    Text Solution

    |

  8. Find the range of f(x)=sqrt(cos(sinx))+sqrt(sin(cosx)).

    Text Solution

    |

  9. Find the domain of the function: f(x)=(sin^(-1)(x-3))/(sqrt(9-x^2))

    Text Solution

    |

  10. If f: RvecR and g: RvecR are defined by f(x)=2x+3a n dg(x)=x^2+7, then...

    Text Solution

    |

  11. Suppose f:[-2,2] to R is defined by f(x)={{:(-1 " for " -2 le x le 0...

    Text Solution

    |

  12. If f:R->R and g:R->R is given by f(x) =|x| and g(x)=[x] for each x in ...

    Text Solution

    |

  13. If a , b are two fixed positive integers such that f(a+x)=b+[b^3+1-3b^...

    Text Solution

    |

  14. The domain of the function f(x)=(log)(3+x)(x^2-1) is (-3,-1)uu(1,oo) ...

    Text Solution

    |

  15. Period of f(x)=sin3x cos[3x]-cos3x sin [3x] (where [ ] denotes the gre...

    Text Solution

    |

  16. Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)). Then,

    Text Solution

    |

  17. Domain of (sqrt(x^(2)-4x+3)+1) log(5)""((x)/(5))+(1)/(x)(sqrt(8x-2x^(2...

    Text Solution

    |

  18. The period of the function f(x)=cos2pi{2x}-sin2 pi {2x}, is ( w...

    Text Solution

    |

  19. If f(n+2)=(1)/(2){f(n+1)+(9)/(f(n))}, n in N and f(n) gt0 for all n i...

    Text Solution

    |

  20. Let f(x)={{:(x^(2) sin ((pix)/(2)),-1 lt x lt 1, x ne 0),(x|x|, x gt 1...

    Text Solution

    |