Home
Class 12
MATHS
Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x))....

Let `f(x)=(1)/(x) and g(x)=(1)/(sqrt(x))`. Then,

A

f(g(x)) and g(f(x)) have different domains

B

f(g(x)) and g(f(x)) have same domain

C

g(f(x)) is a bijective mapping

D

f(g(x)) is neither odd or even.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the functions \( f(x) = \frac{1}{x} \) and \( g(x) = \frac{1}{\sqrt{x}} \), and then evaluate the compositions \( f(g(x)) \) and \( g(f(x)) \). ### Step 1: Find \( f(g(x)) \) 1. **Substitute \( g(x) \) into \( f(x) \)**: \[ f(g(x)) = f\left(\frac{1}{\sqrt{x}}\right) = \frac{1}{\frac{1}{\sqrt{x}}} = \sqrt{x} \] ### Step 2: Find \( g(f(x)) \) 2. **Substitute \( f(x) \) into \( g(x) \)**: \[ g(f(x)) = g\left(\frac{1}{x}\right) = \frac{1}{\sqrt{\frac{1}{x}}} = \sqrt{x} \] ### Step 3: Determine the domains of \( f(g(x)) \) and \( g(f(x)) \) 3. **Domain of \( f(g(x)) = \sqrt{x} \)**: - The function \( g(x) = \frac{1}{\sqrt{x}} \) is defined for \( x > 0 \) (since \( \sqrt{x} \) must be real and positive). - Therefore, \( f(g(x)) \) is defined for \( x > 0 \). 4. **Domain of \( g(f(x)) = \sqrt{x} \)**: - The function \( f(x) = \frac{1}{x} \) is defined for \( x \neq 0 \). - Since \( g(f(x)) \) is also \( \sqrt{x} \), it is defined for \( x > 0 \). ### Step 4: Check if \( g(f(x)) \) is a bijective function 5. **Check if \( g(f(x)) = \sqrt{x} \) is one-to-one**: - Let \( g(f(x_1)) = g(f(x_2)) \). - This implies \( \sqrt{x_1} = \sqrt{x_2} \), which leads to \( x_1 = x_2 \). Thus, \( g(f(x)) \) is one-to-one. 6. **Check if \( g(f(x)) \) is onto**: - The range of \( g(f(x)) = \sqrt{x} \) is \( [0, \infty) \). - The co-domain is also \( [0, \infty) \), so it is onto. ### Step 5: Check if \( f(g(x)) \) is odd or even 7. **Check if \( f(g(x)) = \sqrt{x} \) is odd or even**: - A function \( h(x) \) is even if \( h(-x) = h(x) \) and odd if \( h(-x) = -h(x) \). - Since \( \sqrt{-x} \) is not defined for \( x > 0 \), \( f(g(x)) \) is neither odd nor even. ### Conclusion - The function \( f(g(x)) = \sqrt{x} \) is defined for \( x > 0 \) and is neither odd nor even. - The function \( g(f(x)) = \sqrt{x} \) is a bijective function. ### Summary of Results - \( f(g(x)) = \sqrt{x} \) is neither odd nor even. - \( g(f(x)) = \sqrt{x} \) is a bijective function.
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(1)/(1+x) and let g(x,n)=f(f(f(….(x)))) , then lim_(nrarroo)g(x, n) at x = 1 is

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

f(x)=1/abs(x), g(x)=sqrt(x^(-2))

If f(x) = (3)/(x-2) and g(x) = sqrt(x + 1) , find the domain of f @ g .

Suppose that g(x)=1+sqrt(x) and f(g(x))=3+2sqrt(x)+xdot Then find the function f(x)dot

Let f(x)=x/(1+x) and let g(x)=(rx)/(1-x) , Let S be the set off all real numbers r such that f(g(x))=g(f(x)) for infinitely many real number x. The number of elements in set S is

Let f(x)=sin^(-1)x and g(x)=cos^(-1)x , then which of the following statements are correct?

If f(x) = x^(2) + x + 5 and g(x) = sqrt(x) , then what is the value of (g(4))/(f(1)) ?

Suppose that g(x)=1+sqrt(x) " and " f(g(x))=3+2sqrt(x)+x. Then find the function f(x) .

If f(x)=sqrt(x^(2)-1) and g(x)=(10)/(x+2) , then g(f(3)) =

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Exercise
  1. The domain of the function f(x)=cos^(-1)[secx], where [x] denotes the ...

    Text Solution

    |

  2. Let f be a real vlaued fuction with domain R such that f(x+1)+f(x-1)=s...

    Text Solution

    |

  3. Let f be a real valued function with domain R satisfying f(x + k) =1+[...

    Text Solution

    |

  4. The function f(x) given by f(x)=(sin 8x cos x-sin6x cos 3x)/(cos x cos...

    Text Solution

    |

  5. If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and ...

    Text Solution

    |

  6. Let f(x)=|x-2|+|x-3|+|x-4| and g(x)=f(x+1). Then :

    Text Solution

    |

  7. If T(1) is the period of the function f(x)=e^(3(x-[x])) and T(2) is th...

    Text Solution

    |

  8. Find the range of f(x)=sqrt(cos(sinx))+sqrt(sin(cosx)).

    Text Solution

    |

  9. Find the domain of the function: f(x)=(sin^(-1)(x-3))/(sqrt(9-x^2))

    Text Solution

    |

  10. If f: RvecR and g: RvecR are defined by f(x)=2x+3a n dg(x)=x^2+7, then...

    Text Solution

    |

  11. Suppose f:[-2,2] to R is defined by f(x)={{:(-1 " for " -2 le x le 0...

    Text Solution

    |

  12. If f:R->R and g:R->R is given by f(x) =|x| and g(x)=[x] for each x in ...

    Text Solution

    |

  13. If a , b are two fixed positive integers such that f(a+x)=b+[b^3+1-3b^...

    Text Solution

    |

  14. The domain of the function f(x)=(log)(3+x)(x^2-1) is (-3,-1)uu(1,oo) ...

    Text Solution

    |

  15. Period of f(x)=sin3x cos[3x]-cos3x sin [3x] (where [ ] denotes the gre...

    Text Solution

    |

  16. Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)). Then,

    Text Solution

    |

  17. Domain of (sqrt(x^(2)-4x+3)+1) log(5)""((x)/(5))+(1)/(x)(sqrt(8x-2x^(2...

    Text Solution

    |

  18. The period of the function f(x)=cos2pi{2x}-sin2 pi {2x}, is ( w...

    Text Solution

    |

  19. If f(n+2)=(1)/(2){f(n+1)+(9)/(f(n))}, n in N and f(n) gt0 for all n i...

    Text Solution

    |

  20. Let f(x)={{:(x^(2) sin ((pix)/(2)),-1 lt x lt 1, x ne 0),(x|x|, x gt 1...

    Text Solution

    |