Home
Class 12
MATHS
Let f(x)={{:(x^(2) sin ((pix)/(2)),-1 lt...

Let `f(x)={{:(x^(2) sin ((pix)/(2)),-1 lt x lt 1, x ne 0),(x|x|, x gt 1 or x le -1):}` . Then ,

A

f(x) is an odd function

B

f(x) is an even function

C

f(x) is neither odd nor even

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) \) is even, odd, or neither, we need to analyze the given piecewise function: \[ f(x) = \begin{cases} x^2 \sin\left(\frac{\pi x}{2}\right) & \text{for } -1 < x < 1, \, x \neq 0 \\ x |x| & \text{for } x \geq 1 \text{ or } x \leq -1 \end{cases} \] ### Step 1: Define the conditions for even and odd functions - A function \( f(x) \) is **even** if \( f(-x) = f(x) \) for all \( x \). - A function \( f(x) \) is **odd** if \( f(-x) = -f(x) \) for all \( x \). ### Step 2: Find \( f(-x) \) We will find \( f(-x) \) for both cases of the piecewise function. 1. **For \( -1 < x < 1 \)**: - Here, \( -x \) will also lie in the interval \( -1 < -x < 1 \). - Thus, \[ f(-x) = (-x)^2 \sin\left(\frac{\pi (-x)}{2}\right) = x^2 \sin\left(-\frac{\pi x}{2}\right) = -x^2 \sin\left(\frac{\pi x}{2}\right) \] 2. **For \( x \geq 1 \) or \( x \leq -1 \)**: - If \( x \geq 1 \), then \( -x \leq -1 \). - Thus, \[ f(-x) = -x |x| = -x^2 \quad \text{(since } |x| = x \text{ for } x \geq 1\text{)} \] - If \( x \leq -1 \), then \( -x \geq 1 \). - Thus, \[ f(-x) = -x |x| = -x^2 \quad \text{(since } |x| = -x \text{ for } x \leq -1\text{)} \] ### Step 3: Compare \( f(-x) \) and \( -f(x) \) Now we will compare \( f(-x) \) with \( -f(x) \). 1. **For \( -1 < x < 1 \)**: - We have \( f(x) = x^2 \sin\left(\frac{\pi x}{2}\right) \). - Therefore, \[ -f(x) = -x^2 \sin\left(\frac{\pi x}{2}\right) \] - Since \( f(-x) = -x^2 \sin\left(\frac{\pi x}{2}\right) \), we see that \( f(-x) = -f(x) \). 2. **For \( x \geq 1 \) or \( x \leq -1 \)**: - We have \( f(x) = x |x| = x^2 \). - Therefore, \[ -f(x) = -x^2 \] - Since \( f(-x) = -x^2 \), we see that \( f(-x) = -f(x) \). ### Conclusion Since \( f(-x) = -f(x) \) holds true for all cases, we conclude that the function \( f(x) \) is an **odd function**. ### Final Answer The function \( f(x) \) is an odd function.
Promotional Banner

Topper's Solved these Questions

  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|8 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:( 0,x=0),(x^(2) sin pi//2x,|x| lt 1),(x|x|, |x| ge 1):} . Then , f(x) is

A function f(x) given by f(x)={{:(x^(2)sin""(pix)/(2), |x| lt1),(x|x|,|x| ge1):}is

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

"If "f(x)={{:(,-x-(pi)/(2),x le -(pi)/(2)),(,-cos x,-(pi)/(2) lt x le 0),(,x-1,0 lt x le 1),(,"In "x,x gt 1):} then which one of the following is not correct?

Let f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt 0),(,cos x,0 le x lt pi/2),(,1+sin x,pi/2 le x le pi):}" Then at "x=pi/2 , f(x) has:

f(x) {{:(-2"," if x le -1),(2x"," if -1lt x le 1),(2"," if x gt 1):}

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

f (x)= {{:(2(x+1),,, x le -1),( sqrt(1- x^(2)),,, -1 lt x lt 1), (|||x|-1|-1|,,, x ge1 ):} , then:

The function f(x) given by f(x)={{:(x^(4)tan""(pix)/(2),|x| lt1),(x|x|,|x| ge1):} is

Let f(x) = {{:( x^(3) + x^(2) - 10 x ,, -1 le x lt 0) , (sin x ,, 0 le x lt x//2) , (1 + cos x ,, pi //2 le x le x ):} then f(x) has

OBJECTIVE RD SHARMA ENGLISH-REAL FUNCTIONS -Exercise
  1. The domain of the function f(x)=cos^(-1)[secx], where [x] denotes the ...

    Text Solution

    |

  2. Let f be a real vlaued fuction with domain R such that f(x+1)+f(x-1)=s...

    Text Solution

    |

  3. Let f be a real valued function with domain R satisfying f(x + k) =1+[...

    Text Solution

    |

  4. The function f(x) given by f(x)=(sin 8x cos x-sin6x cos 3x)/(cos x cos...

    Text Solution

    |

  5. If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and ...

    Text Solution

    |

  6. Let f(x)=|x-2|+|x-3|+|x-4| and g(x)=f(x+1). Then :

    Text Solution

    |

  7. If T(1) is the period of the function f(x)=e^(3(x-[x])) and T(2) is th...

    Text Solution

    |

  8. Find the range of f(x)=sqrt(cos(sinx))+sqrt(sin(cosx)).

    Text Solution

    |

  9. Find the domain of the function: f(x)=(sin^(-1)(x-3))/(sqrt(9-x^2))

    Text Solution

    |

  10. If f: RvecR and g: RvecR are defined by f(x)=2x+3a n dg(x)=x^2+7, then...

    Text Solution

    |

  11. Suppose f:[-2,2] to R is defined by f(x)={{:(-1 " for " -2 le x le 0...

    Text Solution

    |

  12. If f:R->R and g:R->R is given by f(x) =|x| and g(x)=[x] for each x in ...

    Text Solution

    |

  13. If a , b are two fixed positive integers such that f(a+x)=b+[b^3+1-3b^...

    Text Solution

    |

  14. The domain of the function f(x)=(log)(3+x)(x^2-1) is (-3,-1)uu(1,oo) ...

    Text Solution

    |

  15. Period of f(x)=sin3x cos[3x]-cos3x sin [3x] (where [ ] denotes the gre...

    Text Solution

    |

  16. Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)). Then,

    Text Solution

    |

  17. Domain of (sqrt(x^(2)-4x+3)+1) log(5)""((x)/(5))+(1)/(x)(sqrt(8x-2x^(2...

    Text Solution

    |

  18. The period of the function f(x)=cos2pi{2x}-sin2 pi {2x}, is ( w...

    Text Solution

    |

  19. If f(n+2)=(1)/(2){f(n+1)+(9)/(f(n))}, n in N and f(n) gt0 for all n i...

    Text Solution

    |

  20. Let f(x)={{:(x^(2) sin ((pix)/(2)),-1 lt x lt 1, x ne 0),(x|x|, x gt 1...

    Text Solution

    |