Home
Class 12
MATHS
sec^(2)theta==(4ab)/((a+b)^(2)), where a...

`sec^(2)theta==(4ab)/((a+b)^(2)),` where a, b `inR` is true if and olny if

A

`a+b ne0`

B

`a=b, a ne0`

C

`a=b`

D

`a ne 0, bne0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sec^2 \theta = \frac{4ab}{(a+b)^2} \) where \( a, b \in \mathbb{R} \), we will follow these steps: ### Step 1: Understand the properties of \( \sec^2 \theta \) We know that \( \sec^2 \theta \) is always greater than or equal to 1 for all real values of \( \theta \). Therefore, we can write: \[ \sec^2 \theta \geq 1 \] ### Step 2: Set up the inequality Given that \( \sec^2 \theta = \frac{4ab}{(a+b)^2} \), we can substitute this into our inequality: \[ \frac{4ab}{(a+b)^2} \geq 1 \] ### Step 3: Rearrange the inequality To eliminate the fraction, we multiply both sides by \( (a+b)^2 \) (noting that \( (a+b)^2 > 0 \) since \( a, b \) are real numbers): \[ 4ab \geq (a+b)^2 \] ### Step 4: Expand the right-hand side Now, we expand \( (a+b)^2 \): \[ 4ab \geq a^2 + 2ab + b^2 \] ### Step 5: Rearrange the terms Rearranging gives us: \[ 4ab - 2ab - a^2 - b^2 \geq 0 \] which simplifies to: \[ 2ab - a^2 - b^2 \geq 0 \] ### Step 6: Factor the inequality We can rewrite this as: \[ -a^2 + 2ab - b^2 \geq 0 \] This can be factored as: \[ -(a^2 - 2ab + b^2) \geq 0 \] or equivalently: \[ -(a-b)^2 \geq 0 \] ### Step 7: Analyze the inequality Since \( -(a-b)^2 \) is less than or equal to 0, the only way for this inequality to hold is if: \[ (a-b)^2 = 0 \] which implies: \[ a - b = 0 \quad \Rightarrow \quad a = b \] ### Conclusion Thus, the condition \( \sec^2 \theta = \frac{4ab}{(a+b)^2} \) holds true if and only if: \[ a = b \quad \text{and} \quad a, b \neq 0 \] ### Final Answer: The solution is \( a = b \) where \( a \) and \( b \) are not equal to zero. ---

To solve the equation \( \sec^2 \theta = \frac{4ab}{(a+b)^2} \) where \( a, b \in \mathbb{R} \), we will follow these steps: ### Step 1: Understand the properties of \( \sec^2 \theta \) We know that \( \sec^2 \theta \) is always greater than or equal to 1 for all real values of \( \theta \). Therefore, we can write: \[ \sec^2 \theta \geq 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

sec theta=(a^(2)+b^(2))/(a^(2)-b^(2)), where a, binR, gives real balues of theta if and only if

Statement I If a, b,c, in R and not all equal, then sec theta=((bc+ca+ab))/((a^(2)+b^(2)+c^(2))) , Statement II sec theta le -1 and sec theta ge 1

If theta=3alpha and sin theta=(a)/(sqrt(a^(2)+b^(2)) , the value of the expression a co sec alpha-b sec alpha is

If theta is an acute angle and sin theta=(a^2-b^2)/(a^2+b^2) (a, b>0) find the values of tan theta , sec theta and cosec theta

costheta=(a^(2)+b^(2))/(2ab) , where a and b are two distinct numbers such that ab gt 0 .

If (a+b)^2/(4ab)=sin^2theta , then

Find the sum of n terms of the series (a+b)+(a^(2)+ab+b^(2))+(a^(3)+a^(2)b+ab^(2)+b^(3))+"......." where a ne 1,bne 1 and a ne b .

Statement-1: if thetane2npi+(pi)/(2),n inZ, then (sec^(2)theta+tantheta)/(sec^(2)theta-tantheta)"lies between"1/3 and 3. Statement-2: If x inR, then 1/3le(x^(2)-x+1)/(x^(2)+x+1)le3.

Prove that tan(ilog_e((a-ib)/(a+ib)))=(2ab)/(a^2-b^2) (where a, b in R^+ )

If the normal at 'theta' on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 meets the transverse axis at G , and A and A' are the vertices of the hyperbola , then AC.A'G= (a) a^2(e^4 sec^2 theta-1) (b) a^2(e^4 tan^2 theta-1) (c) b^2(e^4 sec^2 theta-1) (d) b^2(e^4 sec^2 theta+1)

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. The set of all possible values of alpha in [-pi,pi] such that sqrt((1...

    Text Solution

    |

  2. If |tan A| lt A is acute, then (sqrt((1+sin2A))+sqrt((1-sin2A)))/(sq...

    Text Solution

    |

  3. sec^(2)theta==(4ab)/((a+b)^(2)), where a, b inR is true if and olny if

    Text Solution

    |

  4. Which one is true ?

    Text Solution

    |

  5. If 10sin^4 alpha+15 cos^4 alpha=6, then find the value of 27 cosec^6 a...

    Text Solution

    |

  6. Let cos(alpha + beta) = 4//5 and let sin ( alpha - beta)= 5//13, wher...

    Text Solution

    |

  7. If alpha=sin x cos^(3) x and beta=cos x sin^(3) x, then :

    Text Solution

    |

  8. The expression (tan A)/(1-cotA)+(cot A)/(1-tan A) can be written as

    Text Solution

    |

  9. Let P={theta:sintheta-costheta=sqrt2costheta}and Q={theta: sintheta+co...

    Text Solution

    |

  10. If x cos alpha+ y sin alpha= x cos beta + y sin beta=2a(0 lt alpha, be...

    Text Solution

    |

  11. If sinx+cosecx=2, then find the value of sin^(10)x+cosec^(10)x.

    Text Solution

    |

  12. The value of sin^(8)theta+cos^(8)theta+sin^(6)theta cos^(2)theta+3sin^...

    Text Solution

    |

  13. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  14. If sin(theta+alpha)=a,cos^(2)(theta+beta)=b, then sin(alpha-beta)=

    Text Solution

    |

  15. Q. Let n be an add integer if sin ntheta = sum(r=0)^n(br)sin^rtheta, f...

    Text Solution

    |

  16. Which of the following number(s) is/are rational? sin15^0 (b) cos15^0...

    Text Solution

    |

  17. Let (3pi)/4 < theta < pi and sqrt(2 cot theta+1/sin^2 theta) = k - cot...

    Text Solution

    |

  18. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  19. If A > 0, B > 0 and A+B=pi/6, then the minimum value of tan A + tan B ...

    Text Solution

    |

  20. For a positive integer n , let fn(theta)=(tantheta//2)(1+sectheta)(1+s...

    Text Solution

    |