Home
Class 12
MATHS
The value of sin^(8)theta+cos^(8)theta+s...

The value of `sin^(8)theta+cos^(8)theta+sin^(6)theta cos^(2)theta+3sin^(4)theta cos^(2)theta+cos^(6)theta sin^(2)theta+3sin^(2)thetacos^(4)theta` is equal to

A

`cos^(2)2 theta`

B

`sin^(2)2theta`

C

`cos^(3)2 theta+sin^(3)2theta`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^8 \theta + \cos^8 \theta + \sin^6 \theta \cos^2 \theta + 3 \sin^4 \theta \cos^2 \theta + \cos^6 \theta \sin^2 \theta + 3 \sin^2 \theta \cos^4 \theta \), we can simplify it step by step. ### Step 1: Group the terms We can start by grouping the terms in a way that makes it easier to factor them. The expression can be rearranged as follows: \[ \sin^8 \theta + \cos^8 \theta + \sin^6 \theta \cos^2 \theta + \cos^6 \theta \sin^2 \theta + 3 \sin^4 \theta \cos^2 \theta + 3 \sin^2 \theta \cos^4 \theta \] ### Step 2: Use identities We can use the identity \( \sin^2 \theta + \cos^2 \theta = 1 \) to help simplify the expression. ### Step 3: Factor common terms Notice that we can factor out \( \sin^4 \theta \) and \( \cos^4 \theta \) from certain terms: \[ = \sin^8 \theta + \cos^8 \theta + \sin^6 \theta \cos^2 \theta + \cos^6 \theta \sin^2 \theta + 3 \sin^4 \theta \cos^2 \theta + 3 \sin^2 \theta \cos^4 \theta \] This can be rewritten as: \[ = \sin^8 \theta + \cos^8 \theta + (\sin^6 \theta + \cos^6 \theta)(\sin^2 \theta + \cos^2 \theta) + 3 \sin^2 \theta \cos^2 \theta (\sin^2 \theta + \cos^2 \theta) \] Since \( \sin^2 \theta + \cos^2 \theta = 1 \), this simplifies to: \[ = \sin^8 \theta + \cos^8 \theta + \sin^6 \theta + \cos^6 \theta + 3 \sin^2 \theta \cos^2 \theta \] ### Step 4: Use the sum of cubes We can use the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Let \( a = \sin^2 \theta \) and \( b = \cos^2 \theta \). Then: \[ \sin^6 \theta + \cos^6 \theta = (\sin^2 \theta + \cos^2 \theta)(\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta) = 1(\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta) \] Using \( \sin^4 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta = 1 - 2\sin^2 \theta \cos^2 \theta \): \[ \sin^6 \theta + \cos^6 \theta = 1 - 3\sin^2 \theta \cos^2 \theta \] ### Step 5: Combine all parts Now substituting back: \[ \sin^8 \theta + \cos^8 \theta + (1 - 3\sin^2 \theta \cos^2 \theta) + 3\sin^2 \theta \cos^2 \theta \] This simplifies to: \[ \sin^8 \theta + \cos^8 \theta + 1 - 3\sin^2 \theta \cos^2 \theta + 3\sin^2 \theta \cos^2 \theta = \sin^8 \theta + \cos^8 \theta + 1 \] ### Step 6: Use \( \sin^8 \theta + \cos^8 \theta \) Using the identity \( \sin^8 \theta + \cos^8 \theta = (\sin^2 \theta + \cos^2 \theta)(\sin^6 \theta - \sin^4 \theta \cos^2 \theta + \sin^2 \theta \cos^4 \theta) \): \[ = 1(\sin^6 \theta - \sin^4 \theta \cos^2 \theta + \sin^2 \theta \cos^4 \theta) \] This is a bit complex, but we can see that we can directly evaluate \( \sin^8 \theta + \cos^8 \theta \) using the previous results. ### Final Answer Thus, the value of the original expression simplifies to: \[ \sin^8 \theta + \cos^8 \theta + 1 \]

To solve the expression \( \sin^8 \theta + \cos^8 \theta + \sin^6 \theta \cos^2 \theta + 3 \sin^4 \theta \cos^2 \theta + \cos^6 \theta \sin^2 \theta + 3 \sin^2 \theta \cos^4 \theta \), we can simplify it step by step. ### Step 1: Group the terms We can start by grouping the terms in a way that makes it easier to factor them. The expression can be rearranged as follows: \[ \sin^8 \theta + \cos^8 \theta + \sin^6 \theta \cos^2 \theta + \cos^6 \theta \sin^2 \theta + 3 \sin^4 \theta \cos^2 \theta + 3 \sin^2 \theta \cos^4 \theta \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta) is equal to

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta .

Prove that : sin^(2)theta+cos^(4)theta=cos^(2)theta+sin^(4)theta

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0

Prove that sin^(4)theta+2sin^(2)thetacos^(2)theta+cos^(4)theta=1

The value for 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta) +1 is

If cos theta+cos^(2)theta=1 , the value of sin^(2)theta+sin^(4)theta is

Prove that sin^6theta+cos^6theta=1-3sin^2thetacos^2theta

Prove that: sin4 theta=4 sin theta cos^(3)theta-4cos theta sin^(3)theta

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. If x cos alpha+ y sin alpha= x cos beta + y sin beta=2a(0 lt alpha, be...

    Text Solution

    |

  2. If sinx+cosecx=2, then find the value of sin^(10)x+cosec^(10)x.

    Text Solution

    |

  3. The value of sin^(8)theta+cos^(8)theta+sin^(6)theta cos^(2)theta+3sin^...

    Text Solution

    |

  4. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  5. If sin(theta+alpha)=a,cos^(2)(theta+beta)=b, then sin(alpha-beta)=

    Text Solution

    |

  6. Q. Let n be an add integer if sin ntheta = sum(r=0)^n(br)sin^rtheta, f...

    Text Solution

    |

  7. Which of the following number(s) is/are rational? sin15^0 (b) cos15^0...

    Text Solution

    |

  8. Let (3pi)/4 < theta < pi and sqrt(2 cot theta+1/sin^2 theta) = k - cot...

    Text Solution

    |

  9. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  10. If A > 0, B > 0 and A+B=pi/6, then the minimum value of tan A + tan B ...

    Text Solution

    |

  11. For a positive integer n , let fn(theta)=(tantheta//2)(1+sectheta)(1+s...

    Text Solution

    |

  12. Let f(theta)=sintheta(sintheta+sin3theta)dot Then f(theta)i s geq0on ...

    Text Solution

    |

  13. If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals 2(tanbet...

    Text Solution

    |

  14. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  15. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  16. The maximum value of (cos alpha(1))(cos alpha(2))... ( cos alpha(n)) u...

    Text Solution

    |

  17. Prove that tanpi/(16)+2tanpi/8+4=cotpi/(16) .

    Text Solution

    |

  18. If sin A=a cos B and cosA=b sinB then, (a^2 - 1) tan^2 A+(1 -b^2)ta...

    Text Solution

    |

  19. If (pi)/(2)lt thetalt(3pi)/(2),then sqrt((1-sintheta)/(1+sintheta))"is...

    Text Solution

    |

  20. If cos^(4)theta sec^(2)alpha, 1/2 and sin^(4)theta cosec^(2) alpha ar...

    Text Solution

    |