Home
Class 12
MATHS
Let (3pi)/4 < theta < pi and sqrt(2 cot ...

Let `(3pi)/4 < theta < pi` and `sqrt(2 cot theta+1/sin^2 theta) = k - cot theta` then `k=`

A

1

B

`-1`

C

0

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{2 \cot \theta + \frac{1}{\sin^2 \theta}} = k - \cot \theta \) given that \( \frac{3\pi}{4} < \theta < \pi \), we will follow these steps: ### Step 1: Rewrite the expression We start with the left-hand side of the equation: \[ \sqrt{2 \cot \theta + \frac{1}{\sin^2 \theta}} \] We know that \( \cot \theta = \frac{\cos \theta}{\sin \theta} \). Thus, we can rewrite \( 2 \cot \theta \) as: \[ 2 \cot \theta = \frac{2 \cos \theta}{\sin \theta} \] Now, substituting this into the expression gives: \[ \sqrt{\frac{2 \cos \theta}{\sin \theta} + \frac{1}{\sin^2 \theta}} \] ### Step 2: Combine the terms under a common denominator The expression can be combined under a common denominator: \[ \sqrt{\frac{2 \cos \theta \sin + 1}{\sin^2 \theta}} \] This simplifies to: \[ \sqrt{\frac{2 \cos \theta \sin + 1}{\sin^2 \theta}} = \frac{\sqrt{2 \cos \theta \sin + 1}}{\sin \theta} \] ### Step 3: Use the Pythagorean identity Recall the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \). Thus, we can express \( 1 \) as \( \sin^2 \theta + \cos^2 \theta \): \[ \sqrt{2 \cos \theta \sin + \sin^2 \theta + \cos^2 \theta} = \sqrt{(\sin \theta + \cos \theta)^2} \] This simplifies to: \[ \frac{|\sin \theta + \cos \theta|}{\sin \theta} \] ### Step 4: Determine the sign of the expression Since \( \frac{3\pi}{4} < \theta < \pi \), we are in the second quadrant where both \( \sin \theta \) is positive and \( \cos \theta \) is negative. Therefore, \( \sin \theta + \cos \theta \) will also be positive. Thus: \[ |\sin \theta + \cos \theta| = \sin \theta + \cos \theta \] So we have: \[ \frac{\sin \theta + \cos \theta}{\sin \theta} = 1 + \frac{\cos \theta}{\sin \theta} = 1 + \cot \theta \] ### Step 5: Set the equation Now we can equate this to the right-hand side of the original equation: \[ 1 + \cot \theta = k - \cot \theta \] ### Step 6: Solve for \( k \) Rearranging gives: \[ k = 1 + 2\cot \theta \] ### Step 7: Determine \( k \) In the second quadrant, \( \cot \theta \) is negative. However, we need to find \( k \) independent of the specific value of \( \cot \theta \). Since we are looking for a constant \( k \) that satisfies the equation for all \( \theta \) in the given range, we can evaluate at any specific point. For example, if we consider \( \theta = \frac{3\pi}{4} \): \[ \cot\left(\frac{3\pi}{4}\right) = -1 \] Substituting this into the equation gives: \[ k = 1 + 2(-1) = 1 - 2 = -1 \] Thus, the value of \( k \) is: \[ \boxed{-1} \]

To solve the equation \( \sqrt{2 \cot \theta + \frac{1}{\sin^2 \theta}} = k - \cot \theta \) given that \( \frac{3\pi}{4} < \theta < \pi \), we will follow these steps: ### Step 1: Rewrite the expression We start with the left-hand side of the equation: \[ \sqrt{2 \cot \theta + \frac{1}{\sin^2 \theta}} \] We know that \( \cot \theta = \frac{\cos \theta}{\sin \theta} \). Thus, we can rewrite \( 2 \cot \theta \) as: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

f(x)=min(sinx, cosx),x in (-pi,pi) the values of x where f(x) is non differentiable, is the set A . Then A is subset of (A) {(-3pi)/4, (-pi)/4, (3pi)/4} (B) {(-pi)/4, pi/4, (3pi)/3} (C) {(-3pi)/4, (3pi)/4} (D) {(-3pi)/4, (-pi)/4, pi/4, (3pi)/4}

Let the domain and range of inverse circular functions are defined as follows: sin^(-1)xlt(3pi)/4 then solution of x is

The possible values of theta in (0,pi) such that sin (theta) + sin (4theta) + sin(7theta) = 0 are (1) (2pi)/9 , i/4 , (4pi)/9, pi/2, (3pi)/4 , (8pi)/9 (2) pi/4, (5pi)/12, pi/2 , (2pi)/3, (3pi)/4, (8pi)/9 (3) (2pi)/9, pi/4 , pi/2 , (2pi)/3 , (3pi)/4 , (35pi)/36 (4) (2pi)/9, pi/4, pi/2 , (2pi)/3 , (3pi)/4 , (8pi)/9

The possible values of theta in (0,pi) such that sin (theta) + sin (4theta) + sin(7theta) = 0 are (1) (2pi)/9 , i/4 , (4pi)/9, pi/2, (3pi)/4 , (8pi)/9 (2) pi/4, (5pi)/12, pi/2 , (2pi)/3, (3pi)/4, (8pi)/9 (3) (2pi)/9, pi/4 , pi/2 , (2pi)/3 , (3pi)/4 , (35pi)/36 (4) (2pi)/9, pi/4, pi/2 , (2pi)/3 , (3pi)/4 , (8pi)/9

If 2|sin2alpha|=|tanbeta+cotbeta|,alpha,beta in (pi/2,pi), then the value of alpha+beta is (a) (3pi)/4 (b) pi (c) (3pi)/2 (d) (5pi)/4

For f(x)=sin^2x ,x in (0,pi) point of inflection is: pi/6 (b) (2pi)/4 (c) (3pi)/4 (d) (4pi)/3

Let vec a* vec b=0,w h e r e vec aa n d vec b are unit vectors and the unit vector vec c is inclined at an angle theta to both vec aa n d vec bdot If vec c=m vec a+n vec b+p( vec axx vec b),(m ,n , p in R), then a. -pi/4lt=thetalt=pi/4 b. pi/4lt=thetalt=(3pi)/4 c. 0lt=thetalt=pi/4 d. 0lt=thetalt=(3pi)/4

2sin^2 (3pi)/4 +2cos^2 pi/4 +2sec^2 pi/3=10

If cos^2 2x+2cos^2x=1,\ x in (-pi,pi), then x can take the values : +-pi/2 (b) +-pi/4 +-(3pi)/4 (d) none of these

Let theta = tan^(-1) ( tan . (5pi)/4) " and " phi = tan^(-1) ( - tan . (2pi)/3) then

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. Q. Let n be an add integer if sin ntheta = sum(r=0)^n(br)sin^rtheta, f...

    Text Solution

    |

  2. Which of the following number(s) is/are rational? sin15^0 (b) cos15^0...

    Text Solution

    |

  3. Let (3pi)/4 < theta < pi and sqrt(2 cot theta+1/sin^2 theta) = k - cot...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. If A > 0, B > 0 and A+B=pi/6, then the minimum value of tan A + tan B ...

    Text Solution

    |

  6. For a positive integer n , let fn(theta)=(tantheta//2)(1+sectheta)(1+s...

    Text Solution

    |

  7. Let f(theta)=sintheta(sintheta+sin3theta)dot Then f(theta)i s geq0on ...

    Text Solution

    |

  8. If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals 2(tanbet...

    Text Solution

    |

  9. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  10. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  11. The maximum value of (cos alpha(1))(cos alpha(2))... ( cos alpha(n)) u...

    Text Solution

    |

  12. Prove that tanpi/(16)+2tanpi/8+4=cotpi/(16) .

    Text Solution

    |

  13. If sin A=a cos B and cosA=b sinB then, (a^2 - 1) tan^2 A+(1 -b^2)ta...

    Text Solution

    |

  14. If (pi)/(2)lt thetalt(3pi)/(2),then sqrt((1-sintheta)/(1+sintheta))"is...

    Text Solution

    |

  15. If cos^(4)theta sec^(2)alpha, 1/2 and sin^(4)theta cosec^(2) alpha ar...

    Text Solution

    |

  16. If 4 n alpha= pi, then cot alpha cot 2alpha cot 3alpha...cot( 2n-1)alp...

    Text Solution

    |

  17. If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

    Text Solution

    |

  18. If theta=pi/(2^n+1) , prove that: 2^ncosthetacos2thetacos2^2 cos2^(n-1...

    Text Solution

    |

  19. If A+B=pi/3" where "A, B gt 0, then minimum value of sec A + sec B is ...

    Text Solution

    |

  20. If cos(theta - alpha) , costheta , cos(theta + alpha) are in H.P. then...

    Text Solution

    |