Home
Class 12
MATHS
If A > 0, B > 0 and A+B=pi/6, then the m...

If A > 0, B > 0 and `A+B=pi/6`, then the minimum value of `tan A + tan B` is

A

`2-sqrt3`

B

`(2)/(sqrt3)`

C

`sqrt3-sqrt2`

D

`4-2sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( \tan A + \tan B \) given that \( A > 0 \), \( B > 0 \), and \( A + B = \frac{\pi}{6} \), we can follow these steps: ### Step 1: Express \( \tan A + \tan B \) Using the tangent addition formula, we know that: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Since \( A + B = \frac{\pi}{6} \), we have: \[ \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \] Thus, we can write: \[ \frac{1}{\sqrt{3}} = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] ### Step 2: Let \( x = \tan A \) and \( y = \tan B \) We can rewrite the equation as: \[ \frac{1}{\sqrt{3}} = \frac{x + y}{1 - xy} \] Cross-multiplying gives: \[ x + y = \frac{1 - xy}{\sqrt{3}} \] ### Step 3: Rearranging the equation Rearranging the above equation leads to: \[ \sqrt{3}(x + y) + \sqrt{3}xy = 1 \] This can be rewritten as: \[ \sqrt{3}xy + \sqrt{3}(x + y) - 1 = 0 \] ### Step 4: Use AM-GM Inequality To find the minimum value of \( x + y \), we can apply the AM-GM inequality: \[ \frac{x + y}{2} \geq \sqrt{xy} \] Thus, \[ x + y \geq 2\sqrt{xy} \] ### Step 5: Substitute \( xy \) in terms of \( x + y \) From the earlier equation, we can express \( xy \) in terms of \( x + y \): Let \( s = x + y \) and \( p = xy \). Then: \[ \sqrt{3}p + \sqrt{3}s - 1 = 0 \implies p = \frac{1 - \sqrt{3}s}{\sqrt{3}} \] ### Step 6: Substitute \( p \) back into AM-GM Substituting \( p \) into the AM-GM inequality gives: \[ s \geq 2\sqrt{\frac{1 - \sqrt{3}s}{\sqrt{3}}} \] Squaring both sides leads to: \[ s^2 \geq 4 \cdot \frac{1 - \sqrt{3}s}{\sqrt{3}} \] This simplifies to: \[ s^2 \sqrt{3} \geq 4 - 4\sqrt{3}s \] Rearranging gives a quadratic inequality in \( s \): \[ s^2 \sqrt{3} + 4\sqrt{3}s - 4 \geq 0 \] ### Step 7: Solve the quadratic equation The roots of the quadratic equation \( s^2 \sqrt{3} + 4\sqrt{3}s - 4 = 0 \) can be found using the quadratic formula: \[ s = \frac{-4\sqrt{3} \pm \sqrt{(4\sqrt{3})^2 + 4 \cdot \sqrt{3} \cdot 4}}{2\sqrt{3}} \] Calculating the discriminant and solving for \( s \) gives the minimum value. ### Step 8: Find the minimum value After solving the quadratic, we find that the minimum value of \( \tan A + \tan B \) occurs when \( A = B = \frac{\pi}{12} \), leading to: \[ \tan A + \tan B = 2\tan\left(\frac{\pi}{12}\right) = 2\left(\frac{\sqrt{3} - 1}{\sqrt{3} + 1}\right) = 2\left(\sqrt{3} - 2\right) \] Thus, the minimum value of \( \tan A + \tan B \) is: \[ \boxed{2\sqrt{3} - 4} \]

To find the minimum value of \( \tan A + \tan B \) given that \( A > 0 \), \( B > 0 \), and \( A + B = \frac{\pi}{6} \), we can follow these steps: ### Step 1: Express \( \tan A + \tan B \) Using the tangent addition formula, we know that: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Since \( A + B = \frac{\pi}{6} \), we have: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If A > 0, B > 0, and A + B = pi/3 then the maximum value of tan A tan B is

If ab=2a + 3b, a>0, b>0, then the minimum value of ab is

In a triangle tan A+ tan B + tan C=6 and tan A tan B= 2, then the values of tan A, tan B and tan C are

If A, B, C be an acute angled triangle, then the minimum value of tan^(4)A+tan^(4)B+tan^(4)C will be

If A,B,C are angles of a triangle ,then the minimum value of tan^(2)(A/2)+tan^(2)(B/2)+tan^(2)(C/2) , is

If y = tan^(-1).(1)/(2) + tan^(-1) b, (0 b lt 1) and 0 lt y le (pi)/(4) , then the maximum value of b is

If A+B=pi/3 where A, B > 0, then minimum value of sec A + sec B is equal to

If cos A = 0.5 and cos B = (1)/(sqrt2) , find the value of : (tan A - tan B)/( 1+ tan A tan B)

If tan(A+B)=pand tan(A-B)=q, then the value of tan2A, is

(i) If none of A, B is pi/2 and A+B= pi/2 , then tan A tan B =1 .

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. Let (3pi)/4 < theta < pi and sqrt(2 cot theta+1/sin^2 theta) = k - cot...

    Text Solution

    |

  2. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  3. If A > 0, B > 0 and A+B=pi/6, then the minimum value of tan A + tan B ...

    Text Solution

    |

  4. For a positive integer n , let fn(theta)=(tantheta//2)(1+sectheta)(1+s...

    Text Solution

    |

  5. Let f(theta)=sintheta(sintheta+sin3theta)dot Then f(theta)i s geq0on ...

    Text Solution

    |

  6. If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals 2(tanbet...

    Text Solution

    |

  7. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  8. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  9. The maximum value of (cos alpha(1))(cos alpha(2))... ( cos alpha(n)) u...

    Text Solution

    |

  10. Prove that tanpi/(16)+2tanpi/8+4=cotpi/(16) .

    Text Solution

    |

  11. If sin A=a cos B and cosA=b sinB then, (a^2 - 1) tan^2 A+(1 -b^2)ta...

    Text Solution

    |

  12. If (pi)/(2)lt thetalt(3pi)/(2),then sqrt((1-sintheta)/(1+sintheta))"is...

    Text Solution

    |

  13. If cos^(4)theta sec^(2)alpha, 1/2 and sin^(4)theta cosec^(2) alpha ar...

    Text Solution

    |

  14. If 4 n alpha= pi, then cot alpha cot 2alpha cot 3alpha...cot( 2n-1)alp...

    Text Solution

    |

  15. If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

    Text Solution

    |

  16. If theta=pi/(2^n+1) , prove that: 2^ncosthetacos2thetacos2^2 cos2^(n-1...

    Text Solution

    |

  17. If A+B=pi/3" where "A, B gt 0, then minimum value of sec A + sec B is ...

    Text Solution

    |

  18. If cos(theta - alpha) , costheta , cos(theta + alpha) are in H.P. then...

    Text Solution

    |

  19. If asintheta="bsin"(theta+(2pi)/3)="csin"(theta+(4pi)/3) , prove that ...

    Text Solution

    |

  20. If 2 sin alpha cos beta sin gamma=sin beta sin( alpha-gamma). Then, s...

    Text Solution

    |