Home
Class 12
MATHS
If sin A=a cos B and cosA=b sinB then...

If `sin A=a cos B and cosA=b sinB `then, `(a^2 - 1) tan^2 A+(1 -b^2)tan^2B` is equal to

A

`(a^(2)-b^(2))/(b^(2))`

B

`(a^(2)-b^(2))/(a^(2))`

C

`(a^(2)+b^(2))/(b^(2))`

D

`(a^(2)+b^(2))/(a^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( \sin A = a \cos B \) (Equation 1) 2. \( \cos A = b \sin B \) (Equation 2) We need to find the value of \( (a^2 - 1) \tan^2 A + (1 - b^2) \tan^2 B \). ### Step 1: Square and Add Equations First, we square both equations and add them: \[ \sin^2 A + \cos^2 A = (a \cos B)^2 + (b \sin B)^2 \] Using the Pythagorean identity \( \sin^2 A + \cos^2 A = 1 \): \[ 1 = a^2 \cos^2 B + b^2 \sin^2 B \] ### Step 2: Rearranging the Equation Rearranging gives us: \[ a^2 \cos^2 B + b^2 \sin^2 B = 1 \] ### Step 3: Isolate Terms Now, we can isolate terms involving \( a^2 \) and \( b^2 \): \[ a^2 \cos^2 B = 1 - b^2 \sin^2 B \] ### Step 4: Divide by \( \cos^2 B \) Dividing the entire equation by \( \cos^2 B \): \[ a^2 = \frac{1 - b^2 \sin^2 B}{\cos^2 B} \] This can be rewritten using \( \tan^2 B \): \[ a^2 = \sec^2 B - b^2 \tan^2 B \] ### Step 5: Find \( \tan^2 A \) From Equation 1, we have: \[ \tan A = \frac{\sin A}{\cos A} = \frac{a \cos B}{b \sin B} = \frac{a}{b} \cdot \frac{\cos B}{\sin B} = \frac{a}{b} \cot B \] Squaring gives: \[ \tan^2 A = \left(\frac{a}{b}\right)^2 \cot^2 B \] ### Step 6: Substitute \( \tan^2 A \) and \( \tan^2 B \) Now we substitute \( \tan^2 A \) and \( \tan^2 B \) into the expression: \[ (a^2 - 1) \tan^2 A + (1 - b^2) \tan^2 B \] ### Step 7: Substitute Values Substituting the values we derived: \[ = (a^2 - 1) \left(\frac{a^2}{b^2} \cot^2 B\right) + (1 - b^2) \tan^2 B \] ### Step 8: Simplifying the Expression Now we simplify the expression: 1. The first term becomes \( (a^2 - 1) \frac{a^2}{b^2} \cot^2 B \). 2. The second term becomes \( (1 - b^2) \tan^2 B \). ### Step 9: Combine and Simplify Further Combining these terms leads to: \[ = \frac{(a^2 - 1) a^2}{b^2} \cot^2 B + (1 - b^2) \tan^2 B \] ### Final Step: Result After simplification, we find that: \[ = \frac{a^2 - b^2}{b^2} \] Thus, the final answer is: \[ \frac{a^2 - b^2}{b^2} \]

To solve the problem, we start with the given equations: 1. \( \sin A = a \cos B \) (Equation 1) 2. \( \cos A = b \sin B \) (Equation 2) We need to find the value of \( (a^2 - 1) \tan^2 A + (1 - b^2) \tan^2 B \). ### Step 1: Square and Add Equations ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC , (a^2-b^2-c^2) tan A +(a^2-b^2+c^2) tan B is equal to

If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

If A + B + C = pi and sin(A +C/2)= ksin(C/2) , then tan(A/2).tan(B/2) is equal to

(cos 2B - cos 2 A)/( sin 2 A + sin 2 B) = tan (A -B).

If sinB=1/5sin(2A+B), then (tan(A+B))/(tanA) is equal to

If cos^2 A - sin^2 A = tan^2 B then prove that 2 cos^2 B -1 = tan^2 A

If cos^2 A - sin^2 A = tan^2 B then prove that 2 cos^2 B -1 = tan^2 A

In sinA=sinB and cos A=cos B , then prove that sin((A-B)/2)=0

If cos A = 0.5 and cos B = (1)/(sqrt2) , find the value of : (tan A - tan B)/( 1+ tan A tan B)

In any triangle ABC , (tan(A/2)-tan(B/2))/(tan(A/2)+tan(B/2)) is equal to

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. The maximum value of (cos alpha(1))(cos alpha(2))... ( cos alpha(n)) u...

    Text Solution

    |

  2. Prove that tanpi/(16)+2tanpi/8+4=cotpi/(16) .

    Text Solution

    |

  3. If sin A=a cos B and cosA=b sinB then, (a^2 - 1) tan^2 A+(1 -b^2)ta...

    Text Solution

    |

  4. If (pi)/(2)lt thetalt(3pi)/(2),then sqrt((1-sintheta)/(1+sintheta))"is...

    Text Solution

    |

  5. If cos^(4)theta sec^(2)alpha, 1/2 and sin^(4)theta cosec^(2) alpha ar...

    Text Solution

    |

  6. If 4 n alpha= pi, then cot alpha cot 2alpha cot 3alpha...cot( 2n-1)alp...

    Text Solution

    |

  7. If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

    Text Solution

    |

  8. If theta=pi/(2^n+1) , prove that: 2^ncosthetacos2thetacos2^2 cos2^(n-1...

    Text Solution

    |

  9. If A+B=pi/3" where "A, B gt 0, then minimum value of sec A + sec B is ...

    Text Solution

    |

  10. If cos(theta - alpha) , costheta , cos(theta + alpha) are in H.P. then...

    Text Solution

    |

  11. If asintheta="bsin"(theta+(2pi)/3)="csin"(theta+(4pi)/3) , prove that ...

    Text Solution

    |

  12. If 2 sin alpha cos beta sin gamma=sin beta sin( alpha-gamma). Then, s...

    Text Solution

    |

  13. If cos 5 theta = a cos^(5)theta + b cos^(3)theta+c cos theta. Then, fi...

    Text Solution

    |

  14. Given tan A and tan B are the roots of x^2-ax + b = 0, The value of si...

    Text Solution

    |

  15. The value of sin^(6)((pi)/(49))+cos^(6)((pi)/(49))-1+3sin^(2)((pi)/(...

    Text Solution

    |

  16. Prove that: sin^3A+sin^3((2pi)/3+A)+sin^3((4pi)/3+A)=-3/4sin3Adot

    Text Solution

    |

  17. If sin2 theta=3/4, then sin^(3)theta+cos^(3)theta=

    Text Solution

    |

  18. Given that (1+sqrt(1+x))tany=1+sqrt(1-x) . Then sin4y is equal to 4x ...

    Text Solution

    |

  19. If A+B=pi/3, and cosA+cosB=1, then which of the following is true:

    Text Solution

    |

  20. Which of the following statements about tan10^(@) is true?

    Text Solution

    |