Home
Class 12
MATHS
If sin2 theta=3/4, then sin^(3)theta+cos...

If `sin2 theta=3/4, then sin^(3)theta+cos^(3)theta=`

A

`(sqrt5)/(8)`

B

`(sqrt7)/(8)`

C

5`(sqrt7)/(16)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( \sin^3 \theta + \cos^3 \theta \) given that \( \sin 2\theta = \frac{3}{4} \). ### Step-by-Step Solution: 1. **Use the identity for \( \sin^3 \theta + \cos^3 \theta \)**: \[ \sin^3 \theta + \cos^3 \theta = (\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta) \] Since \( \sin^2 \theta + \cos^2 \theta = 1 \), we can simplify this to: \[ \sin^3 \theta + \cos^3 \theta = (\sin \theta + \cos \theta)(1 - \sin \theta \cos \theta) \] 2. **Find \( \sin \theta \cos \theta \)**: We know that: \[ \sin 2\theta = 2 \sin \theta \cos \theta \] Given \( \sin 2\theta = \frac{3}{4} \), we can find \( \sin \theta \cos \theta \): \[ 2 \sin \theta \cos \theta = \frac{3}{4} \implies \sin \theta \cos \theta = \frac{3}{8} \] 3. **Now we need to find \( \sin \theta + \cos \theta \)**: We can use the identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] and the square of the sum: \[ (\sin \theta + \cos \theta)^2 = \sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cos \theta = 1 + 2 \sin \theta \cos \theta \] Substituting \( \sin \theta \cos \theta = \frac{3}{8} \): \[ (\sin \theta + \cos \theta)^2 = 1 + 2 \left(\frac{3}{8}\right) = 1 + \frac{3}{4} = \frac{7}{4} \] Therefore: \[ \sin \theta + \cos \theta = \sqrt{\frac{7}{4}} = \frac{\sqrt{7}}{2} \] 4. **Now substitute back into the expression for \( \sin^3 \theta + \cos^3 \theta \)**: \[ \sin^3 \theta + \cos^3 \theta = \left(\frac{\sqrt{7}}{2}\right) \left(1 - \frac{3}{8}\right) \] Simplifying the second term: \[ 1 - \frac{3}{8} = \frac{8}{8} - \frac{3}{8} = \frac{5}{8} \] Thus: \[ \sin^3 \theta + \cos^3 \theta = \left(\frac{\sqrt{7}}{2}\right) \left(\frac{5}{8}\right) = \frac{5\sqrt{7}}{16} \] ### Final Answer: \[ \sin^3 \theta + \cos^3 \theta = \frac{5\sqrt{7}}{16} \]

To solve the problem, we need to find \( \sin^3 \theta + \cos^3 \theta \) given that \( \sin 2\theta = \frac{3}{4} \). ### Step-by-Step Solution: 1. **Use the identity for \( \sin^3 \theta + \cos^3 \theta \)**: \[ \sin^3 \theta + \cos^3 \theta = (\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Prove that: sin4 theta=4 sin theta cos^(3)theta-4cos theta sin^(3)theta

The value of Delta=|(1,sin 3theta, sin^(3)theta),(2cos theta, sin 6 theta, sin^(3)2 theta),(4cos^(2)theta-1,sin 9 theta, sin^(3)3theta)| equal to

Let sin theta-cos theta=1 then the value of sin^(3) theta-cos^(3)theta is :

Prove that : (2 cos^(3) theta-cos theta)/(sin theta-2 sin^(3)theta)=cot theta

The value of sin^(8)theta+cos^(8)theta+sin^(6)theta cos^(2)theta+3sin^(4)theta cos^(2)theta+cos^(6)theta sin^(2)theta+3sin^(2)thetacos^(4)theta is equal to

Prove that cos^(3)thetasin3theta+sin^(3)theta cos 3theta=(3)/(4)sin 4 theta .

If x sin^3 theta+ y cos^3 theta = sin theta cos theta and x sin theta = y cos theta, Find the value of x^2 + y^2.

If (cos^(3) theta )/( (1- sin theta ))+( sin^(3) theta )/( (1+ cos theta ))=1+ cos theta , then number of possible values of theta is ( where theta in [0,2pi] )

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. The value of sin^(6)((pi)/(49))+cos^(6)((pi)/(49))-1+3sin^(2)((pi)/(...

    Text Solution

    |

  2. Prove that: sin^3A+sin^3((2pi)/3+A)+sin^3((4pi)/3+A)=-3/4sin3Adot

    Text Solution

    |

  3. If sin2 theta=3/4, then sin^(3)theta+cos^(3)theta=

    Text Solution

    |

  4. Given that (1+sqrt(1+x))tany=1+sqrt(1-x) . Then sin4y is equal to 4x ...

    Text Solution

    |

  5. If A+B=pi/3, and cosA+cosB=1, then which of the following is true:

    Text Solution

    |

  6. Which of the following statements about tan10^(@) is true?

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. If tanalpha=sqrta where a is not a perfect square then which of the fo...

    Text Solution

    |

  9. If sec2 theta=p+tan2 theta, then the value of sin^(2)theta in therms o...

    Text Solution

    |

  10. The value of sinpi/n + sin(3pi)/n + sin(5pi)/n +………. to n terms is equ...

    Text Solution

    |

  11. Find the value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""...

    Text Solution

    |

  12. Find the value of sum(r=1)^(n-1)sin^(2)""(rpi)/(n).

    Text Solution

    |

  13. If tan""(2pi)/(18),x andtan""(7pi)/(18) are in A.P. and tan""(2pi)/(18...

    Text Solution

    |

  14. The Minimum value of 27^cosx +81^sinx is equal to

    Text Solution

    |

  15. The value of tan alpha +2tan(2alpha)+4tan(4alpha)+...+2^(n-1)tan(2^(n...

    Text Solution

    |

  16. If tantheta + tan(theta + pi/3) + tan(theta-pi/3)= Ktan3theta, then K ...

    Text Solution

    |

  17. For 0ltxlt(pi)/(6), all the values of tan^(2)3x cos^(2)x-4tan3xsin2x+1...

    Text Solution

    |

  18. In a cyclic quadrilateral ABCD, the value of 2+sum cos A cos B, is

    Text Solution

    |

  19. If x+y+z=pi,,tan x tanz=2and tanytanz=18,then tan^(2)z=

    Text Solution

    |

  20. Biggest among (sin1+cos1),(sqrt(sin1))+sqrt(cos1)),sqrt(1+sin2)and 1...

    Text Solution

    |