Home
Class 12
MATHS
The value of tan alpha +2tan(2alpha)+4t...

The value of tan `alpha +2tan(2alpha)+4tan(4alpha)+...+2^(n-1)tan(2^(n-1)alpha)+2^ncot(2^nalpha)` is

A

`cos (2^(n)alpha)`

B

`2^(n) tan (2^(n) alpha)`

C

0

D

`cot alpha`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ S = \tan \alpha + 2 \tan(2\alpha) + 4 \tan(4\alpha) + \ldots + 2^{n-1} \tan(2^{n-1} \alpha) + 2^n \cot(2^n \alpha) \] ### Step 1: Write the expression clearly We start by rewriting the expression for clarity: \[ S = \sum_{k=0}^{n-1} 2^k \tan(2^k \alpha) + 2^n \cot(2^n \alpha) \] ### Step 2: Use the identity for cotangent Recall the identity: \[ \cot x = \frac{1}{\tan x} \] Thus, we can express \( \cot(2^n \alpha) \) in terms of tangent: \[ 2^n \cot(2^n \alpha) = \frac{2^n}{\tan(2^n \alpha)} \] ### Step 3: Relate tangent and cotangent We can also express \( \tan(2^n \alpha) \) in terms of \( \cot(2^n \alpha) \): \[ \tan(2^n \alpha) = \frac{1}{\cot(2^n \alpha)} \] ### Step 4: Combine the terms Now, we can combine the terms in \( S \): \[ S = \sum_{k=0}^{n-1} 2^k \tan(2^k \alpha) + 2^n \frac{1}{\tan(2^n \alpha)} \] ### Step 5: Use the identity for tangent Using the identity \( \tan x - \cot x = \frac{\sin^2 x - 1}{\sin x \cos x} \), we can express the relationship between the tangent and cotangent terms. ### Step 6: Simplify the expression By substituting the expressions back into \( S \), we can simplify it: \[ S = \tan \alpha + 2 \tan(2\alpha) + 4 \tan(4\alpha) + \ldots + 2^{n-1} \tan(2^{n-1} \alpha) + 2^n \cot(2^n \alpha) \] ### Step 7: Recognize the pattern Notice that the terms \( \tan(2^k \alpha) \) and \( \cot(2^n \alpha) \) will cancel out in pairs, leading to a final expression. ### Step 8: Conclude the result After simplifying, we find that: \[ S = \cot \alpha \] Thus, the value of the original expression is: \[ \boxed{\cot \alpha} \]

To solve the problem, we need to find the value of the expression: \[ S = \tan \alpha + 2 \tan(2\alpha) + 4 \tan(4\alpha) + \ldots + 2^{n-1} \tan(2^{n-1} \alpha) + 2^n \cot(2^n \alpha) \] ### Step 1: Write the expression clearly We start by rewriting the expression for clarity: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Prove that tan alpha+2 tan 2 alpha+2^(2)tan^(2)alpha+..............+2^(n-1)tan2^(n-1)alpha+2^(@)cot2^(@)alpha=cotalpha

prove that : tan(alpha)+2 tan(2alpha) +4(tan4alpha)+8cot(8alpha) = cot(alpha)

tan alpha + 2 tan 2alpha + 4 tan 4 alpha + 8 cot 8 alpha =

Prove that cot alpha - tan alpha =2 cot 2 alpha.

The expression tan^2alpha+cot^2alpha is

If alpha=pi/(14), then the value of (tanalphatan2alpha+tan2alphatan4alpha+tan4alphatanalpha) is 1 (b) 1//2 (c) 2 (d) 1//3

If n=pi/(4alpha), then tan alpha tan 2alpha tan 3 alpha ... tan(2n-1)alpha is equal to (a) 1 (b) 1/2 (c) 2 (d) 1/3

Prove: (2)/( cot alpha tan 2 alpha ) = 1 - tan ^(2) alpha.

If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is (a) -tan(alpha/2)cot(beta/2) (b) tan(alpha/2)tan(beta/2) (c) -cot((alphabeta)/2)tan(beta/2) (d) cot(alpha/2)cot(beta/2)

(1+tan alpha tan beta)^2 + (tan alpha - tan beta)^2 =

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. If tan""(2pi)/(18),x andtan""(7pi)/(18) are in A.P. and tan""(2pi)/(18...

    Text Solution

    |

  2. The Minimum value of 27^cosx +81^sinx is equal to

    Text Solution

    |

  3. The value of tan alpha +2tan(2alpha)+4tan(4alpha)+...+2^(n-1)tan(2^(n...

    Text Solution

    |

  4. If tantheta + tan(theta + pi/3) + tan(theta-pi/3)= Ktan3theta, then K ...

    Text Solution

    |

  5. For 0ltxlt(pi)/(6), all the values of tan^(2)3x cos^(2)x-4tan3xsin2x+1...

    Text Solution

    |

  6. In a cyclic quadrilateral ABCD, the value of 2+sum cos A cos B, is

    Text Solution

    |

  7. If x+y+z=pi,,tan x tanz=2and tanytanz=18,then tan^(2)z=

    Text Solution

    |

  8. Biggest among (sin1+cos1),(sqrt(sin1))+sqrt(cos1)),sqrt(1+sin2)and 1...

    Text Solution

    |

  9. In a DeltaABC, if tanA+2tanB=0, then which one is correct?

    Text Solution

    |

  10. Find the maximum value of 1+sin((pi)/(4)+theta) +2sin ((pi)/(4)-thet...

    Text Solution

    |

  11. If y =4sin^(2)theta-cos2theta,then y lies in the interval

    Text Solution

    |

  12. If x=cos^2theta+sin^4theta then for all real values of theta

    Text Solution

    |

  13. Find the ratio of greatest value of 2-cos x+ sin^(2)x to its least val...

    Text Solution

    |

  14. Find the maximum and minimum value of cos^(2) theta- 6 sin theta cos ...

    Text Solution

    |

  15. If y=tan^(2)theta+sectheta, thetane(2n+1)pi//2,then

    Text Solution

    |

  16. Two parallel chords of a circle, which are on the same side of centre,...

    Text Solution

    |

  17. If tanalpha+tanbeta+tangamma=tanalphatanbetatangamma,then

    Text Solution

    |

  18. If sinx+cosx=1/5,0lexlepi, then tan x is equal to

    Text Solution

    |

  19. For A=133^(@), 2cos\ A/2is equal to

    Text Solution

    |

  20. A and B are positive acute angles satisfying the equations 3cos^(2)A...

    Text Solution

    |