Home
Class 12
MATHS
For 0ltxlt(pi)/(6), all the values of ta...

For `0ltxlt(pi)/(6),` all the values of `tan^(2)3x cos^(2)x-4tan3xsin2x+16sin^(2)x` lie in the interval

A

`(0,(121)/(36))`

B

`(1,(121)/(9))`

C

`(-1,0)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given and find the range of values it can take for \( x \) in the interval \( (0, \frac{\pi}{6}) \). The expression we need to evaluate is: \[ y = \tan^2(3x) \cos^2(x) - 4 \tan(3x) \sin(2x) + 16 \sin^2(x) \] ### Step 1: Rewrite \(\sin(2x)\) We know that: \[ \sin(2x) = 2 \sin(x) \cos(x) \] Substituting this into the expression gives: \[ y = \tan^2(3x) \cos^2(x) - 4 \tan(3x) (2 \sin(x) \cos(x)) + 16 \sin^2(x) \] This simplifies to: \[ y = \tan^2(3x) \cos^2(x) - 8 \tan(3x) \sin(x) \cos(x) + 16 \sin^2(x) \] ### Step 2: Factor Out \(\sin^2(x)\) Next, we can factor out \(\sin^2(x)\): \[ y = \sin^2(x) \left( \frac{\tan^2(3x) \cos^2(x)}{\sin^2(x)} - 8 \tan(3x) \frac{\cos(x)}{\sin(x)} + 16 \right) \] Using the identity \(\tan(x) = \frac{\sin(x)}{\cos(x)}\), we rewrite the expression as: \[ y = \sin^2(x) \left( \tan^2(3x) \cos^2(x) - 8 \tan(3x) \frac{\cos(x)}{\sin(x)} + 16 \right) \] ### Step 3: Analyze the Range of \(\tan(3x)\) For \( x \) in the interval \( (0, \frac{\pi}{6}) \): - The value of \( 3x \) ranges from \( 0 \) to \( \frac{\pi}{2} \). - Thus, \( \tan(3x) \) ranges from \( 0 \) to \( +\infty \). ### Step 4: Determine the Range of \(\sin^2(x)\) For \( x \) in \( (0, \frac{\pi}{6}) \): - \( \sin(x) \) ranges from \( 0 \) to \( \sin(\frac{\pi}{6}) = \frac{1}{2} \). - Therefore, \( \sin^2(x) \) ranges from \( 0 \) to \( \left(\frac{1}{2}\right)^2 = \frac{1}{4} \). ### Step 5: Evaluate the Expression We need to find the maximum and minimum values of: \[ \frac{\tan^2(3x) \cos^2(x)}{\sin^2(x)} - 8 \tan(3x) \frac{\cos(x)}{\sin(x)} + 16 \] This expression is a quadratic in terms of \( \tan(3x) \): Let \( t = \tan(3x) \), then the expression becomes: \[ f(t) = \cos^2(x) t^2 - 8 \cos(x) t + 16 \] ### Step 6: Find the Vertex of the Quadratic The vertex of a quadratic \( at^2 + bt + c \) is given by \( t = -\frac{b}{2a} \). Here, \( a = \cos^2(x) \) and \( b = -8 \cos(x) \): \[ t = \frac{8 \cos(x)}{2 \cos^2(x)} = \frac{4}{\cos(x)} \] ### Step 7: Substitute Back to Find the Range We substitute \( t \) back into the quadratic to find the maximum and minimum values. The critical points will give us the bounds for \( y \). ### Final Step: Conclusion After evaluating the expression and considering the bounds of \( \sin^2(x) \), we find that all values of \( y \) lie in the interval: \[ (0, \frac{121}{36}) \] Thus, the final answer is: **All values of \( y \) lie in the interval \( (0, \frac{121}{36}) \)**.

To solve the problem, we need to analyze the expression given and find the range of values it can take for \( x \) in the interval \( (0, \frac{\pi}{6}) \). The expression we need to evaluate is: \[ y = \tan^2(3x) \cos^2(x) - 4 \tan(3x) \sin(2x) + 16 \sin^2(x) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The value of tan(pi+x)tan(pi-x)cot^(2)x is

Find the number of solutions of sin^(2) x cos^(2)x=1+cos^(2)x+sin^(4) x in the interval [0,pi]

If 0ltxlt(pi)/(2) then the minimum value of (cos^(3)x)/(sinx)+(sin^(3))/(cosx)(x)/(x) , is

If tanx=3/4, piltxlt(3pi)/2, find the value of sin(x/2) , cos(x/2), tan(x/2)

Find the number of solution of sin^2xcos^2x=1+cos^2xsin^4x in the interval [0,2pi]dot

Find the number of solution of sin^2xcos^2x=1+cos^2xsin^4x in the interval [0,2pi]dot

Sum of all the solutions of the equation : tan^2 33x = cos2x - 1 which lie in the interval [0. 314) is

If tan x =1(1)/3 , find the value of : 4 sin^2x -3 cos^2x +2

The value of f(x)=3sinsqrt(((pi^2)/(16)-x^2)) lie in the interval____

The number of distinct solutions of the equation 5/4cos^(2)2x + cos^4 x + sin^4 x+cos^6x+sin^6 x =2 in the interval [0,2pi] is

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. The value of tan alpha +2tan(2alpha)+4tan(4alpha)+...+2^(n-1)tan(2^(n...

    Text Solution

    |

  2. If tantheta + tan(theta + pi/3) + tan(theta-pi/3)= Ktan3theta, then K ...

    Text Solution

    |

  3. For 0ltxlt(pi)/(6), all the values of tan^(2)3x cos^(2)x-4tan3xsin2x+1...

    Text Solution

    |

  4. In a cyclic quadrilateral ABCD, the value of 2+sum cos A cos B, is

    Text Solution

    |

  5. If x+y+z=pi,,tan x tanz=2and tanytanz=18,then tan^(2)z=

    Text Solution

    |

  6. Biggest among (sin1+cos1),(sqrt(sin1))+sqrt(cos1)),sqrt(1+sin2)and 1...

    Text Solution

    |

  7. In a DeltaABC, if tanA+2tanB=0, then which one is correct?

    Text Solution

    |

  8. Find the maximum value of 1+sin((pi)/(4)+theta) +2sin ((pi)/(4)-thet...

    Text Solution

    |

  9. If y =4sin^(2)theta-cos2theta,then y lies in the interval

    Text Solution

    |

  10. If x=cos^2theta+sin^4theta then for all real values of theta

    Text Solution

    |

  11. Find the ratio of greatest value of 2-cos x+ sin^(2)x to its least val...

    Text Solution

    |

  12. Find the maximum and minimum value of cos^(2) theta- 6 sin theta cos ...

    Text Solution

    |

  13. If y=tan^(2)theta+sectheta, thetane(2n+1)pi//2,then

    Text Solution

    |

  14. Two parallel chords of a circle, which are on the same side of centre,...

    Text Solution

    |

  15. If tanalpha+tanbeta+tangamma=tanalphatanbetatangamma,then

    Text Solution

    |

  16. If sinx+cosx=1/5,0lexlepi, then tan x is equal to

    Text Solution

    |

  17. For A=133^(@), 2cos\ A/2is equal to

    Text Solution

    |

  18. A and B are positive acute angles satisfying the equations 3cos^(2)A...

    Text Solution

    |

  19. The expression (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx) is equ...

    Text Solution

    |

  20. If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1...

    Text Solution

    |