Home
Class 12
MATHS
In a DeltaABC, if tanA+2tanB=0, then wh...

In a `DeltaABC, if tanA+2tanB=0,` then which one is correct?

A

`0lttan^(2)Cle1/8`

B

`1/8lttan^(2)Cle1/2`

C

`1/2lttan^(2)Clt1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation in the context of triangle ABC, where \( \tan A + 2 \tan B = 0 \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \tan A + 2 \tan B = 0 \] From this, we can express \( \tan A \) in terms of \( \tan B \): \[ \tan A = -2 \tan B \] **Hint:** Rearranging the equation helps isolate one variable. 2. **Use the identity for the sum of tangents in a triangle:** In any triangle, the following identity holds: \[ \tan A + \tan B + \tan C = \tan A \tan B \tan C \] Substitute \( \tan A = -2 \tan B \) into this identity: \[ -2 \tan B + \tan B + \tan C = (-2 \tan B) \tan B \tan C \] **Hint:** Remember that the sum of angles in a triangle is related to their tangents. 3. **Simplify the equation:** This simplifies to: \[ -\tan B + \tan C = -2 \tan^2 B \tan C \] Rearranging gives: \[ \tan C + 2 \tan^2 B \tan C = \tan B \] Factor out \( \tan C \): \[ \tan C (1 + 2 \tan^2 B) = \tan B \] **Hint:** Factoring can help simplify complex equations. 4. **Rearranging gives:** \[ \tan C = \frac{\tan B}{1 + 2 \tan^2 B} \] **Hint:** Isolating \( \tan C \) allows us to analyze its behavior as \( \tan B \) changes. 5. **Finding the bounds for \( \tan^2 C \):** Since \( \tan C = \frac{\tan B}{1 + 2 \tan^2 B} \), we can square both sides: \[ \tan^2 C = \left( \frac{\tan B}{1 + 2 \tan^2 B} \right)^2 \] **Hint:** Squaring the equation helps in finding the range of \( \tan^2 C \). 6. **Analyze the limits:** As \( \tan B \) approaches 0, \( \tan^2 C \) approaches 0. As \( \tan B \) increases, we need to analyze the behavior of \( \tan^2 C \): \[ \tan^2 C \text{ will be maximized when } 1 + 2 \tan^2 B \text{ is minimized.} \] The minimum occurs when \( \tan^2 B = 0 \), leading to: \[ \tan^2 C \leq \frac{1}{8} \] **Hint:** Understanding limits and behavior of functions helps in determining maximum and minimum values. 7. **Conclusion:** Thus, we find that: \[ 0 \leq \tan^2 C \leq \frac{1}{8} \] Therefore, the correct option is: \[ \text{The value of } \tan^2 C \text{ goes from } 0 \text{ to } \frac{1}{8}. \] **Final Answer:** The correct option is that \( \tan^2 C \) values go from \( 0 \) to \( \frac{1}{8} \).

To solve the problem, we need to analyze the given equation in the context of triangle ABC, where \( \tan A + 2 \tan B = 0 \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \tan A + 2 \tan B = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

In a DeltaABC , if tanA/2=5/6 and tanB/2=20/37 then tanC/2=

If in a Delta ABC, tanA+tanB+tanC=6 then cotA cotB cot C= a.6, b. 1, c. 1/6, d. none of these

In DeltaABC , tanA+tanB+tanC=tanAtanBtanC

tanA +tanB + tanC = tanA tanB tanC if

If in a DeltaABC , c = 3b and C - B = 90°, then tanB=

If in a DeltaABC , c = 3b and C - B = 90°, then tanB=

In DeltaABC, tanA=2, tanB=(3)/(2) and c=sqrt(65) , then circumradius of the triangle is : (a) 65 (b) (65)/(7) (c) (65)/(14) (d) none of these

If in a triangle ABC, tanA+tanB+tanC>0 the triangle is (A) acute angled triangle (B) obtuse angled (C) right angled (D) none of these

If in DeltaABC, tan A+tanB+tanC=6 and tanA tanB=2 , then sin^(2)A:sin^(2)B:sin^(2)C is

If tanA+tanB+tanC=tanAtanBtanC then

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. If x+y+z=pi,,tan x tanz=2and tanytanz=18,then tan^(2)z=

    Text Solution

    |

  2. Biggest among (sin1+cos1),(sqrt(sin1))+sqrt(cos1)),sqrt(1+sin2)and 1...

    Text Solution

    |

  3. In a DeltaABC, if tanA+2tanB=0, then which one is correct?

    Text Solution

    |

  4. Find the maximum value of 1+sin((pi)/(4)+theta) +2sin ((pi)/(4)-thet...

    Text Solution

    |

  5. If y =4sin^(2)theta-cos2theta,then y lies in the interval

    Text Solution

    |

  6. If x=cos^2theta+sin^4theta then for all real values of theta

    Text Solution

    |

  7. Find the ratio of greatest value of 2-cos x+ sin^(2)x to its least val...

    Text Solution

    |

  8. Find the maximum and minimum value of cos^(2) theta- 6 sin theta cos ...

    Text Solution

    |

  9. If y=tan^(2)theta+sectheta, thetane(2n+1)pi//2,then

    Text Solution

    |

  10. Two parallel chords of a circle, which are on the same side of centre,...

    Text Solution

    |

  11. If tanalpha+tanbeta+tangamma=tanalphatanbetatangamma,then

    Text Solution

    |

  12. If sinx+cosx=1/5,0lexlepi, then tan x is equal to

    Text Solution

    |

  13. For A=133^(@), 2cos\ A/2is equal to

    Text Solution

    |

  14. A and B are positive acute angles satisfying the equations 3cos^(2)A...

    Text Solution

    |

  15. The expression (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx) is equ...

    Text Solution

    |

  16. If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1...

    Text Solution

    |

  17. The expression 2^(sintheta)+2^(-costheta) is minimum when theta is equ...

    Text Solution

    |

  18. If A is an obtause angle, then (sin^(3)A-cos^(3)A)/(sinA-cosA)+(sinA)/...

    Text Solution

    |

  19. In a triangle ABC, cos3A+cos3B+cos3C=1, then find any one angle.

    Text Solution

    |

  20. If alpha,beta,gamma,delta are the smallest positive angles in ascendin...

    Text Solution

    |