Home
Class 12
MATHS
If x=cos^2theta+sin^4theta then for all ...

If `x=cos^2theta+sin^4theta` then for all real values of `theta`

A

`x in[1,2]`

B

`x in[13//16,1]`

C

`x in[3//4,13//16]`

D

`x in[3//4,1]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the range of the expression \( x = \cos^2 \theta + \sin^4 \theta \) for all real values of \( \theta \). ### Step-by-Step Solution: 1. **Rewrite the Expression**: We start with the given expression: \[ x = \cos^2 \theta + \sin^4 \theta \] We can rewrite \( \sin^4 \theta \) in terms of \( \sin^2 \theta \): \[ \sin^4 \theta = (\sin^2 \theta)^2 \] Thus, we can express \( x \) as: \[ x = \cos^2 \theta + (\sin^2 \theta)^2 \] 2. **Use the Pythagorean Identity**: We know from the Pythagorean identity that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Let \( y = \sin^2 \theta \). Then \( \cos^2 \theta = 1 - y \). Substituting this into our expression for \( x \): \[ x = (1 - y) + y^2 \] Simplifying gives: \[ x = 1 - y + y^2 \] 3. **Form a Quadratic Equation**: The expression \( x = y^2 - y + 1 \) is a quadratic in \( y \). We can analyze this quadratic to find its minimum value. The general form of a quadratic \( ay^2 + by + c \) has its vertex at \( y = -\frac{b}{2a} \): \[ y = -\frac{-1}{2 \cdot 1} = \frac{1}{2} \] 4. **Calculate the Value at the Vertex**: Substitute \( y = \frac{1}{2} \) back into the expression for \( x \): \[ x = \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right) + 1 = \frac{1}{4} - \frac{1}{2} + 1 = \frac{1}{4} - \frac{2}{4} + \frac{4}{4} = \frac{3}{4} \] 5. **Determine the Maximum Value**: Since \( y = \sin^2 \theta \) can take values from \( 0 \) to \( 1 \), we need to evaluate \( x \) at these endpoints: - When \( y = 0 \): \[ x = 1 - 0 + 0^2 = 1 \] - When \( y = 1 \): \[ x = 1 - 1 + 1^2 = 1 \] 6. **Conclusion**: The minimum value of \( x \) occurs at \( y = \frac{1}{2} \) which gives \( x = \frac{3}{4} \), and the maximum value occurs at the endpoints \( y = 0 \) or \( y = 1 \) which gives \( x = 1 \). Thus, the range of \( x \) is: \[ \frac{3}{4} \leq x \leq 1 \] ### Final Answer: The value of \( x \) lies between \( \frac{3}{4} \) and \( 1 \).

To solve the problem, we need to find the range of the expression \( x = \cos^2 \theta + \sin^4 \theta \) for all real values of \( \theta \). ### Step-by-Step Solution: 1. **Rewrite the Expression**: We start with the given expression: \[ x = \cos^2 \theta + \sin^4 \theta ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If A = sin^2 theta+ cos^4 theta , then for all real values of theta

Find the maximum and minimum value of 5cos theta+3sin(theta+(pi)/(6)) for all real values of theta . .

If A=sin^(8) theta + cos^(14) theta , then for all values of theta ,

Minimum value of cos2theta+costheta for all real value of theta is

Can 6 sin^2 theta - 7 sin theta + 2 = 0 for any real value of theta ?

Let x= cos theta and y = sin theta for any real value theta . Then x^(2)+y^(2)=

Find the values of p if it satisfy, cos theta = x + p/x, x in R for all real values of theta .

If A=cos^2theta+sin^4theta, prove that 3/4lt=Alt=1 for all values of thetadot

The maximum value of 1+sin(pi/4+theta)+2cos(pi/4-theta) for real values of theta is

If sin(pi cos theta) = cos(pi sin theta) , then the value of cos(theta+- pi/4) is

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. Find the maximum value of 1+sin((pi)/(4)+theta) +2sin ((pi)/(4)-thet...

    Text Solution

    |

  2. If y =4sin^(2)theta-cos2theta,then y lies in the interval

    Text Solution

    |

  3. If x=cos^2theta+sin^4theta then for all real values of theta

    Text Solution

    |

  4. Find the ratio of greatest value of 2-cos x+ sin^(2)x to its least val...

    Text Solution

    |

  5. Find the maximum and minimum value of cos^(2) theta- 6 sin theta cos ...

    Text Solution

    |

  6. If y=tan^(2)theta+sectheta, thetane(2n+1)pi//2,then

    Text Solution

    |

  7. Two parallel chords of a circle, which are on the same side of centre,...

    Text Solution

    |

  8. If tanalpha+tanbeta+tangamma=tanalphatanbetatangamma,then

    Text Solution

    |

  9. If sinx+cosx=1/5,0lexlepi, then tan x is equal to

    Text Solution

    |

  10. For A=133^(@), 2cos\ A/2is equal to

    Text Solution

    |

  11. A and B are positive acute angles satisfying the equations 3cos^(2)A...

    Text Solution

    |

  12. The expression (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx) is equ...

    Text Solution

    |

  13. If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1...

    Text Solution

    |

  14. The expression 2^(sintheta)+2^(-costheta) is minimum when theta is equ...

    Text Solution

    |

  15. If A is an obtause angle, then (sin^(3)A-cos^(3)A)/(sinA-cosA)+(sinA)/...

    Text Solution

    |

  16. In a triangle ABC, cos3A+cos3B+cos3C=1, then find any one angle.

    Text Solution

    |

  17. If alpha,beta,gamma,delta are the smallest positive angles in ascendin...

    Text Solution

    |

  18. If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1, then

    Text Solution

    |

  19. In a DeltaABC, cos A+cos B+cosC belongs to the interval

    Text Solution

    |

  20. In an acute-angled triangle ABC, tanA+tanB+tanC=tanAtanBtanC, then ta...

    Text Solution

    |