Home
Class 12
MATHS
If tanalpha+tanbeta+tangamma=tanalphatan...

If `tanalpha+tanbeta+tangamma=tanalphatanbetatangamma,then`

A

`alpha, beta` must be angles of a triangle

B

the sum of any two of `alpha, beta,gamma` is equal to the third

C

`alpha+beta+gamma` must be an integral multiple of `pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \tan \beta \tan \gamma \), we can follow these steps: ### Step 1: Use the tangent addition formula We know that the tangent of the sum of three angles can be expressed as: \[ \tan(\alpha + \beta + \gamma) = \frac{\tan \alpha + \tan \beta + \tan \gamma - \tan \alpha \tan \beta \tan \gamma}{1 - (\tan \alpha \tan \beta + \tan \beta \tan \gamma + \tan \gamma \tan \alpha)} \] ### Step 2: Substitute the given condition Given that \( \tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \tan \beta \tan \gamma \), we can substitute this into the formula: \[ \tan(\alpha + \beta + \gamma) = \frac{\tan \alpha \tan \beta \tan \gamma - \tan \alpha \tan \beta \tan \gamma}{1 - (\tan \alpha \tan \beta + \tan \beta \tan \gamma + \tan \gamma \tan \alpha)} \] ### Step 3: Simplify the equation The numerator simplifies to 0: \[ \tan(\alpha + \beta + \gamma) = \frac{0}{1 - (\tan \alpha \tan \beta + \tan \beta \tan \gamma + \tan \gamma \tan \alpha)} = 0 \] ### Step 4: Analyze the result Since \( \tan(\alpha + \beta + \gamma) = 0 \), this implies that: \[ \alpha + \beta + \gamma = n\pi \] where \( n \) is any integer. ### Conclusion Thus, we conclude that: \[ \alpha + \beta + \gamma = n\pi \] for some integer \( n \).

To solve the equation \( \tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \tan \beta \tan \gamma \), we can follow these steps: ### Step 1: Use the tangent addition formula We know that the tangent of the sum of three angles can be expressed as: \[ \tan(\alpha + \beta + \gamma) = \frac{\tan \alpha + \tan \beta + \tan \gamma - \tan \alpha \tan \beta \tan \gamma}{1 - (\tan \alpha \tan \beta + \tan \beta \tan \gamma + \tan \gamma \tan \alpha)} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Let alpha=som^(-1)((36)/(85)),beta=cos^(-1)(4/5)a n dgamma=tan^(-1)(8/(15)) then cotalpha+cotbeta+cotgamma=cotalphacotbetacotgamma tanalphatanbeta+tanbetatangamma+tanalphatangamma=1 tanalpha+tanbeta+tangamma=tanalphatanbetatangamma cotalphacotbeta+cotbetacotgamma+cotalphacotgamma=1

Let alpha,betaa n dgamma be some angles in the first quadrant satisfying tan(alpha+beta)=(15)/8a n dcos e cgamma=(17)/8, then which of the following hold(s) good? (a) alpha+beta+gamma=pi (b) cotalpha+cotbeta+cotgamma=cotalphacotbetacotgamma (c) tanalpha+tanbeta+tangamma=tanalphatanbetatangamma (d) tanalphatanbeta+tanbetatangamma+tangammatanalpha=1

A right angle is divided into three positive parts alpha,betaa n dgammadot Prove that for all possible divisions t a nalpha+tanbeta+tangamma>1+tanalphatanbetatangammadot

(1+tanalphatanbeta)^2+(tanalpha-tanbeta)^2=

(1+tanalphatanbeta)^2+(tanalpha-tanbeta)^2=

If alpha+beta+gamma=2pi , then show that tan.alpha/2 + tan.beta/2 + tan.gamma/2 = tan.alpha/2 tan.beta/2 tan.gamma/2 .

If (tan(alpha+beta-gamma))/("tan"(alpha-beta+gamma))=(tangamma)/(tanbeta),(beta!=gamma) then sin2alpha+sin2beta+sin2gamma= (a) 0 (b) 1 (c) 2 (d) 1/2

If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals 2(tanbeta+tangamma) (b) tanbeta+tangamma tanbeta+2tangamma (d) 2tanbeta+tangamma

If tanalpha=(1-cosbeta)/(sinbeta),t h e n (a) tan3alpha=tan2beta (b) tan2alpha=tanbeta (c) tan2beta=tanalpha (d) none of these

If tan(alpha-beta)=(sin2beta,)/(3-cos2beta) then (a) tanalpha=2tanbeta (b) tanbeta=2tanalpha (c) 2tanalpha=3tanbeta (d) 3tanalpha=2tanbeta

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. If y=tan^(2)theta+sectheta, thetane(2n+1)pi//2,then

    Text Solution

    |

  2. Two parallel chords of a circle, which are on the same side of centre,...

    Text Solution

    |

  3. If tanalpha+tanbeta+tangamma=tanalphatanbetatangamma,then

    Text Solution

    |

  4. If sinx+cosx=1/5,0lexlepi, then tan x is equal to

    Text Solution

    |

  5. For A=133^(@), 2cos\ A/2is equal to

    Text Solution

    |

  6. A and B are positive acute angles satisfying the equations 3cos^(2)A...

    Text Solution

    |

  7. The expression (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx) is equ...

    Text Solution

    |

  8. If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1...

    Text Solution

    |

  9. The expression 2^(sintheta)+2^(-costheta) is minimum when theta is equ...

    Text Solution

    |

  10. If A is an obtause angle, then (sin^(3)A-cos^(3)A)/(sinA-cosA)+(sinA)/...

    Text Solution

    |

  11. In a triangle ABC, cos3A+cos3B+cos3C=1, then find any one angle.

    Text Solution

    |

  12. If alpha,beta,gamma,delta are the smallest positive angles in ascendin...

    Text Solution

    |

  13. If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1, then

    Text Solution

    |

  14. In a DeltaABC, cos A+cos B+cosC belongs to the interval

    Text Solution

    |

  15. In an acute-angled triangle ABC, tanA+tanB+tanC=tanAtanBtanC, then ta...

    Text Solution

    |

  16. In a DeltaABC, sin A sinB sinC is

    Text Solution

    |

  17. In Delta ABC, "cot"(A)/(2) + "cot" (B)/(2) + "cot" (C)/(2) is equal to

    Text Solution

    |

  18. In a DeltaABC, cos""(A)/(2)cos""(B)/(2)cos""C/(2) is

    Text Solution

    |

  19. If 8sin^(3)xsin3x=sum(r=0)^(n)a^(r)cosrx is an identity in x, then n=

    Text Solution

    |

  20. The number of integral triplets (a, b, c) such that a+b cos 2x+c sin^(...

    Text Solution

    |