Home
Class 12
MATHS
The expression (cos6x+6cos4x+15cos2x+10...

The expression `(cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx)` is equal to

A

`cos^(2)x`

B

`1+cosx`

C

`cos 2x`

D

`2cos x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\cos 6x + 6\cos 4x + 15\cos 2x + 10}{\cos 5x + 5\cos 3x + 10\cos x} \] we will simplify both the numerator and the denominator step by step. ### Step 1: Simplifying the Numerator The numerator is: \[ \cos 6x + 6\cos 4x + 15\cos 2x + 10 \] We can rearrange and group the terms: \[ \cos 6x + 6\cos 4x + 15\cos 2x + 10 = \cos 6x + 6\cos 4x + 5\cos 2x + 10\cos 2x + 10 \] Now, we can rewrite \(10\) as \(10\cos 0\): \[ = \cos 6x + 6\cos 4x + 5\cos 2x + 10\cos 2x + 10\cos 0 \] ### Step 2: Using Cosine Addition Formula Next, we can use the cosine addition formula to combine terms. The formula states: \[ \cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) \] We can apply this to \(\cos 6x + \cos 4x\): \[ \cos 6x + \cos 4x = 2 \cos \left(\frac{6x + 4x}{2}\right) \cos \left(\frac{6x - 4x}{2}\right) = 2 \cos 5x \cos x \] So, we can rewrite the numerator as: \[ = 2 \cos 5x \cos x + 5\cos 2x + 10\cos 2x + 10 \] This simplifies to: \[ = 2 \cos 5x \cos x + 15\cos 2x + 10 \] ### Step 3: Simplifying the Denominator The denominator is: \[ \cos 5x + 5\cos 3x + 10\cos x \] We can group the terms similarly: \[ = \cos 5x + 5\cos 3x + 10\cos x \] ### Step 4: Factor Out Common Terms Now, we can factor out common terms from both the numerator and denominator. From the numerator: \[ = 2\cos x (\cos 5x + 7.5\cos 2x + 5) \] From the denominator: \[ = \cos 5x + 5\cos 3x + 10\cos x \] ### Step 5: Final Simplification Now, we can simplify the entire expression: \[ \frac{2\cos x (\cos 5x + 7.5\cos 2x + 5)}{\cos 5x + 5\cos 3x + 10\cos x} \] If we assume that \(\cos 5x + 5\cos 3x + 10\cos x\) is not zero, we can cancel out \(\cos x\): \[ = 2 \] ### Final Answer Thus, the expression simplifies to: \[ \boxed{2} \]

To solve the expression \[ \frac{\cos 6x + 6\cos 4x + 15\cos 2x + 10}{\cos 5x + 5\cos 3x + 10\cos x} \] we will simplify both the numerator and the denominator step by step. ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The expression (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx) = lambdacosx , then the value of lambda is ___________.

If (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx)=1 , then find the smallest positive value of x.

int ((cos 6x+6cos 4x+ 15 cos 2x+10)/(10 cos ^(2) x +5 cos x cos 3 x+ cos x cos 5 x ))dx =f (x)+C, then f (10) is equal to:

int cos2x*cos4x*cos6x dx

int cos 2x . cos 4x . cos 6x dx

The value of int(sinx.cosx.cos2x.cos4x.cos8x.cos16x) dx is equal to

The value of lim_(xrar2pi)(cos x-(cosx)^(cosx))/(1-cos x+ln(cosx)) is equal to

Solve cos3x+cosx-cos2x=0

To prove (cos5x+cos4x)/(1-2cos3x) = -cos2x-cosx

int (cos 5x + cos 4x)/(1-2cos3x) dx

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. For A=133^(@), 2cos\ A/2is equal to

    Text Solution

    |

  2. A and B are positive acute angles satisfying the equations 3cos^(2)A...

    Text Solution

    |

  3. The expression (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx) is equ...

    Text Solution

    |

  4. If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1...

    Text Solution

    |

  5. The expression 2^(sintheta)+2^(-costheta) is minimum when theta is equ...

    Text Solution

    |

  6. If A is an obtause angle, then (sin^(3)A-cos^(3)A)/(sinA-cosA)+(sinA)/...

    Text Solution

    |

  7. In a triangle ABC, cos3A+cos3B+cos3C=1, then find any one angle.

    Text Solution

    |

  8. If alpha,beta,gamma,delta are the smallest positive angles in ascendin...

    Text Solution

    |

  9. If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1, then

    Text Solution

    |

  10. In a DeltaABC, cos A+cos B+cosC belongs to the interval

    Text Solution

    |

  11. In an acute-angled triangle ABC, tanA+tanB+tanC=tanAtanBtanC, then ta...

    Text Solution

    |

  12. In a DeltaABC, sin A sinB sinC is

    Text Solution

    |

  13. In Delta ABC, "cot"(A)/(2) + "cot" (B)/(2) + "cot" (C)/(2) is equal to

    Text Solution

    |

  14. In a DeltaABC, cos""(A)/(2)cos""(B)/(2)cos""C/(2) is

    Text Solution

    |

  15. If 8sin^(3)xsin3x=sum(r=0)^(n)a^(r)cosrx is an identity in x, then n=

    Text Solution

    |

  16. The number of integral triplets (a, b, c) such that a+b cos 2x+c sin^(...

    Text Solution

    |

  17. If asinx+b cos(x+theta)+bcos(x-theta)=d, then the minimum value of |co...

    Text Solution

    |

  18. If A, B, C be an acute angled triangle, then the minimum value of tan^...

    Text Solution

    |

  19. If x,y,z are variables and 3tan x+4tany+5tanz=20, then the minimum ...

    Text Solution

    |

  20. Let alpha, beta be such that pi lt alpha-betalt3pi if sin alpha+sinbet...

    Text Solution

    |