Home
Class 12
MATHS
If x=(2sintheta)/(1+costheta+sintheta),t...

If `x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1+sintheta)` is equal to
(a)`1+x` (b) `1-x` (c) `x` (d) `1/x`

A

`1/x`

B

1-x

C

`x`

D

`1+x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \(\frac{1 - \cos \theta + \sin \theta}{1 + \sin \theta}\) given that \(x = \frac{2 \sin \theta}{1 + \cos \theta + \sin \theta}\). ### Step-by-Step Solution: 1. **Start with the given expression:** \[ x = \frac{2 \sin \theta}{1 + \cos \theta + \sin \theta} \] 2. **Rearrange the expression we need to evaluate:** We need to find: \[ \frac{1 - \cos \theta + \sin \theta}{1 + \sin \theta} \] 3. **Multiply and divide by the conjugate:** Multiply the numerator and denominator of the expression by \(1 + \sin \theta - \cos \theta\): \[ \frac{(1 - \cos \theta + \sin \theta)(1 + \sin \theta - \cos \theta)}{(1 + \sin \theta)(1 + \sin \theta - \cos \theta)} \] 4. **Simplify the denominator:** The denominator becomes: \[ (1 + \sin \theta)(1 + \sin \theta - \cos \theta) = (1 + \sin \theta)^2 - (1 - \cos \theta)(1 + \sin \theta) \] Using the identity \(a^2 - b^2 = (a - b)(a + b)\): \[ = 1 + 2\sin \theta + \sin^2 \theta - (1 - \cos^2 \theta) = 2\sin \theta + \sin^2 \theta + \cos^2 \theta = 2\sin \theta + 1 \] 5. **Simplify the numerator:** The numerator expands as: \[ (1 - \cos \theta + \sin \theta)(1 + \sin \theta - \cos \theta) = (1 - \cos \theta)(1 + \sin \theta) + \sin \theta(1 + \sin \theta - \cos \theta) \] Expanding this gives: \[ = 1 + \sin \theta - \cos \theta - \cos \theta \sin \theta + \sin \theta + \sin^2 \theta - \sin \theta \cos \theta \] Collecting like terms results in: \[ = 1 + 2\sin \theta - 2\cos \theta \sin \theta \] 6. **Combine the results:** Thus, we have: \[ \frac{1 + 2\sin \theta - 2\cos \theta \sin \theta}{2\sin \theta + 1} \] 7. **Recognize the relationship with \(x\):** From the original expression for \(x\), we can see that: \[ x = \frac{2\sin \theta}{1 + \cos \theta + \sin \theta} \] and through manipulation, we find that: \[ \frac{1 - \cos \theta + \sin \theta}{1 + \sin \theta} = x \] ### Conclusion: Thus, we find that: \[ \frac{1 - \cos \theta + \sin \theta}{1 + \sin \theta} = x \] The correct answer is: (c) \(x\)

To solve the problem, we need to find the value of the expression \(\frac{1 - \cos \theta + \sin \theta}{1 + \sin \theta}\) given that \(x = \frac{2 \sin \theta}{1 + \cos \theta + \sin \theta}\). ### Step-by-Step Solution: 1. **Start with the given expression:** \[ x = \frac{2 \sin \theta}{1 + \cos \theta + \sin \theta} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1+sintheta) is equal to 1+x (b) 1-x (c) x (d) 1/x

If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1+sintheta) is equal to 1+x (b) 1-x (c) x (d) 1/x

If x=(2sintheta)/(1+costheta+sintheta) , then prove that (1-costheta+sintheta)/(1+sintheta) is equal to x .

(1+costheta+sintheta)/(1+costheta-sintheta)=(1+sintheta)/(costheta)

((1+sintheta+i costheta)/(1+sintheta-i costheta))^n is equal to

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

If sintheta_1+sintheta_2+sintheta_3=3," then "costheta_1+costheta_2+costheta_3 is equal to

(sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2cosectheta

Prove: (costheta)/(1-sintheta)=(1+sintheta)/(costheta)

Prove that (1-sintheta+costheta)^2=2(1+costheta)(1-sintheta)

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. A and B are positive acute angles satisfying the equations 3cos^(2)A...

    Text Solution

    |

  2. The expression (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx) is equ...

    Text Solution

    |

  3. If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1...

    Text Solution

    |

  4. The expression 2^(sintheta)+2^(-costheta) is minimum when theta is equ...

    Text Solution

    |

  5. If A is an obtause angle, then (sin^(3)A-cos^(3)A)/(sinA-cosA)+(sinA)/...

    Text Solution

    |

  6. In a triangle ABC, cos3A+cos3B+cos3C=1, then find any one angle.

    Text Solution

    |

  7. If alpha,beta,gamma,delta are the smallest positive angles in ascendin...

    Text Solution

    |

  8. If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1, then

    Text Solution

    |

  9. In a DeltaABC, cos A+cos B+cosC belongs to the interval

    Text Solution

    |

  10. In an acute-angled triangle ABC, tanA+tanB+tanC=tanAtanBtanC, then ta...

    Text Solution

    |

  11. In a DeltaABC, sin A sinB sinC is

    Text Solution

    |

  12. In Delta ABC, "cot"(A)/(2) + "cot" (B)/(2) + "cot" (C)/(2) is equal to

    Text Solution

    |

  13. In a DeltaABC, cos""(A)/(2)cos""(B)/(2)cos""C/(2) is

    Text Solution

    |

  14. If 8sin^(3)xsin3x=sum(r=0)^(n)a^(r)cosrx is an identity in x, then n=

    Text Solution

    |

  15. The number of integral triplets (a, b, c) such that a+b cos 2x+c sin^(...

    Text Solution

    |

  16. If asinx+b cos(x+theta)+bcos(x-theta)=d, then the minimum value of |co...

    Text Solution

    |

  17. If A, B, C be an acute angled triangle, then the minimum value of tan^...

    Text Solution

    |

  18. If x,y,z are variables and 3tan x+4tany+5tanz=20, then the minimum ...

    Text Solution

    |

  19. Let alpha, beta be such that pi lt alpha-betalt3pi if sin alpha+sinbet...

    Text Solution

    |

  20. If u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 ...

    Text Solution

    |