Home
Class 12
MATHS
The expression 2^(sintheta)+2^(-costheta...

The expression `2^(sintheta)+2^(-costheta)` is minimum when `theta` is equal to

A

`2npi+(pi)/(4)`

B

`2npi+(7pi)/(4)`

C

`n pipm(pi)/(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \theta \) for which the expression \( 2^{\sin \theta} + 2^{-\cos \theta} \) is minimized, we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Identify the Expression**: We have the expression \( E = 2^{\sin \theta} + 2^{-\cos \theta} \). 2. **Apply AM-GM Inequality**: According to the AM-GM inequality, for any non-negative numbers \( a \) and \( b \): \[ \frac{a + b}{2} \geq \sqrt{ab} \] Here, let \( a = 2^{\sin \theta} \) and \( b = 2^{-\cos \theta} \). Thus, we have: \[ \frac{2^{\sin \theta} + 2^{-\cos \theta}}{2} \geq \sqrt{2^{\sin \theta} \cdot 2^{-\cos \theta}} \] This simplifies to: \[ 2^{\sin \theta} + 2^{-\cos \theta} \geq 2 \sqrt{2^{\sin \theta - \cos \theta}} \] 3. **Find the Condition for Equality**: The equality in AM-GM holds when \( a = b \). Therefore, we set: \[ 2^{\sin \theta} = 2^{-\cos \theta} \] This implies: \[ \sin \theta = -\cos \theta \] 4. **Solve for \( \theta \)**: The equation \( \sin \theta = -\cos \theta \) can be rewritten as: \[ \sin \theta + \cos \theta = 0 \] This can be solved by dividing through by \( \cos \theta \) (assuming \( \cos \theta \neq 0 \)): \[ \tan \theta = -1 \] The general solutions for \( \tan \theta = -1 \) are: \[ \theta = \frac{3\pi}{4} + n\pi, \quad n \in \mathbb{Z} \] 5. **Find Specific Values**: To find specific values of \( \theta \), we can take \( n = 0 \) and \( n = 1 \): - For \( n = 0 \): \( \theta = \frac{3\pi}{4} \) - For \( n = 1 \): \( \theta = \frac{7\pi}{4} \) 6. **Conclusion**: The expression \( 2^{\sin \theta} + 2^{-\cos \theta} \) is minimized at \( \theta = \frac{3\pi}{4} \) and \( \theta = \frac{7\pi}{4} \).

To find the value of \( \theta \) for which the expression \( 2^{\sin \theta} + 2^{-\cos \theta} \) is minimized, we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Identify the Expression**: We have the expression \( E = 2^{\sin \theta} + 2^{-\cos \theta} \). 2. **Apply AM-GM Inequality**: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

((1+sintheta+i costheta)/(1+sintheta-i costheta))^n is equal to

If sintheta +costheta =1 , then the value of sin2theta is equal to

Express sintheta in terms of costheta

If sintheta=a/b , then costheta is equal to

If 5tantheta =4," then " (5sintheta-3costheta)/(5sintheta+2costheta) is equal to

If 4 tantheta=3, then ((4sintheta-costheta)/(4 sintheta+costheta)) is equal to

If 1/6sintheta,costheta,tantheta are in GdotPdot, then theta is equal to

int(cos2theta)/((sintheta+costheta)^(2))d""theta is equal to

The value of int(1+sin2theta)/(sintheta-costheta)d""theta is equal to

Find the general solution values of theta for which the quadratic (sintheta)x^(2)+(2costheta)x+(costheta+sintheta)/2 is the square of a linear function.

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. The expression (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx) is equ...

    Text Solution

    |

  2. If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1...

    Text Solution

    |

  3. The expression 2^(sintheta)+2^(-costheta) is minimum when theta is equ...

    Text Solution

    |

  4. If A is an obtause angle, then (sin^(3)A-cos^(3)A)/(sinA-cosA)+(sinA)/...

    Text Solution

    |

  5. In a triangle ABC, cos3A+cos3B+cos3C=1, then find any one angle.

    Text Solution

    |

  6. If alpha,beta,gamma,delta are the smallest positive angles in ascendin...

    Text Solution

    |

  7. If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1, then

    Text Solution

    |

  8. In a DeltaABC, cos A+cos B+cosC belongs to the interval

    Text Solution

    |

  9. In an acute-angled triangle ABC, tanA+tanB+tanC=tanAtanBtanC, then ta...

    Text Solution

    |

  10. In a DeltaABC, sin A sinB sinC is

    Text Solution

    |

  11. In Delta ABC, "cot"(A)/(2) + "cot" (B)/(2) + "cot" (C)/(2) is equal to

    Text Solution

    |

  12. In a DeltaABC, cos""(A)/(2)cos""(B)/(2)cos""C/(2) is

    Text Solution

    |

  13. If 8sin^(3)xsin3x=sum(r=0)^(n)a^(r)cosrx is an identity in x, then n=

    Text Solution

    |

  14. The number of integral triplets (a, b, c) such that a+b cos 2x+c sin^(...

    Text Solution

    |

  15. If asinx+b cos(x+theta)+bcos(x-theta)=d, then the minimum value of |co...

    Text Solution

    |

  16. If A, B, C be an acute angled triangle, then the minimum value of tan^...

    Text Solution

    |

  17. If x,y,z are variables and 3tan x+4tany+5tanz=20, then the minimum ...

    Text Solution

    |

  18. Let alpha, beta be such that pi lt alpha-betalt3pi if sin alpha+sinbet...

    Text Solution

    |

  19. If u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 ...

    Text Solution

    |

  20. If A+B+C=270^@ , then cos2A+cos2B+cos2C+4sinAsin B sinC=

    Text Solution

    |