Home
Class 12
MATHS
In a DeltaABC, cos A+cos B+cosC belongs ...

In a `DeltaABC, cos A+cos B+cosC` belongs to the interval

A

`(1//2,3//2)`

B

`(1//,3//2)`

C

`(3//2,2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the interval for \( \cos A + \cos B + \cos C \) in triangle \( ABC \), we can follow these steps: ### Step 1: Use the Cosine Sum Identity We start with the expression \( \cos A + \cos B + \cos C \). We can use the cosine sum identity to rewrite \( \cos A + \cos B \): \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] Since \( A + B + C = 180^\circ \), we can express \( C \) as \( C = 180^\circ - (A + B) \). ### Step 2: Substitute for \( C \) Substituting \( C \) into the expression, we have: \[ \cos C = \cos(180^\circ - (A + B)) = -\cos(A + B) \] Thus, we can rewrite \( \cos A + \cos B + \cos C \) as: \[ \cos A + \cos B - \cos(A + B) \] ### Step 3: Analyze the Range To analyze the range of \( \cos A + \cos B + \cos C \), we know that the values of \( A \), \( B \), and \( C \) are constrained by the triangle inequality and the fact that they must sum to \( 180^\circ \). ### Step 4: Maximum and Minimum Values 1. **Maximum Value**: The maximum occurs when \( A = B = C = 60^\circ \): \[ \cos 60^\circ + \cos 60^\circ + \cos 60^\circ = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{3}{2} \] 2. **Minimum Value**: The minimum occurs when one angle approaches \( 0^\circ \) and the other two angles approach \( 90^\circ \): \[ \cos 0^\circ + \cos 90^\circ + \cos 90^\circ = 1 + 0 + 0 = 1 \] ### Step 5: Conclusion Thus, we conclude that: \[ 1 \leq \cos A + \cos B + \cos C \leq \frac{3}{2} \] Therefore, the interval for \( \cos A + \cos B + \cos C \) is: \[ \boxed{[1, \frac{3}{2}]} \]

To solve the problem of finding the interval for \( \cos A + \cos B + \cos C \) in triangle \( ABC \), we can follow these steps: ### Step 1: Use the Cosine Sum Identity We start with the expression \( \cos A + \cos B + \cos C \). We can use the cosine sum identity to rewrite \( \cos A + \cos B \): \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] Since \( A + B + C = 180^\circ \), we can express \( C \) as \( C = 180^\circ - (A + B) \). ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

In any DeltaABC , a cos A +b cos B + c cos C =

In a DeltaABC , sum (b + c) cos A=

If in a DeltaABC , cos A + 2 cosB+cosC= 2 , then a,b, c are in

In any DeltaABC, is 2 cos B=a/c, then the triangle is

If in a DeltaABC, (a cos A+b cos B+ c cos C)/(a sin B+b sin C+ c sin A)=(a+b+c)/(9R) , then prove that Delta is equilateral.

In any DeltaABC, 2 [bc cos A + ca cos B+ ab cos C]=

In a DeltaABC,3 sin A+4 cos B=6 and 3 cos A+4 sinB=1 , then angleC can be

In a DeltaABC , if 4 cos A cos B + sin 2A+sin 2B+sin 2C=4 , then DeltaABC is

In DeltaABC,if cos A+ sin A -(2)/(cos B + sin B) =0, then (a+b)/c is equal to

In DeltaABC , if sin A + sin B + sin C= 1 + sqrt2 and cos A+cos B+cosC =sqrt2 then the triangle is

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. If alpha,beta,gamma,delta are the smallest positive angles in ascendin...

    Text Solution

    |

  2. If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1, then

    Text Solution

    |

  3. In a DeltaABC, cos A+cos B+cosC belongs to the interval

    Text Solution

    |

  4. In an acute-angled triangle ABC, tanA+tanB+tanC=tanAtanBtanC, then ta...

    Text Solution

    |

  5. In a DeltaABC, sin A sinB sinC is

    Text Solution

    |

  6. In Delta ABC, "cot"(A)/(2) + "cot" (B)/(2) + "cot" (C)/(2) is equal to

    Text Solution

    |

  7. In a DeltaABC, cos""(A)/(2)cos""(B)/(2)cos""C/(2) is

    Text Solution

    |

  8. If 8sin^(3)xsin3x=sum(r=0)^(n)a^(r)cosrx is an identity in x, then n=

    Text Solution

    |

  9. The number of integral triplets (a, b, c) such that a+b cos 2x+c sin^(...

    Text Solution

    |

  10. If asinx+b cos(x+theta)+bcos(x-theta)=d, then the minimum value of |co...

    Text Solution

    |

  11. If A, B, C be an acute angled triangle, then the minimum value of tan^...

    Text Solution

    |

  12. If x,y,z are variables and 3tan x+4tany+5tanz=20, then the minimum ...

    Text Solution

    |

  13. Let alpha, beta be such that pi lt alpha-betalt3pi if sin alpha+sinbet...

    Text Solution

    |

  14. If u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 ...

    Text Solution

    |

  15. If A+B+C=270^@ , then cos2A+cos2B+cos2C+4sinAsin B sinC=

    Text Solution

    |

  16. If theta and phi are acute angles satisfying sin theta=1/2, cos phi=1/...

    Text Solution

    |

  17. If 0ltxltpiand cosx+sinx=1/2, then tan x is equal to

    Text Solution

    |

  18. If (sin^(4)theta)/(a)+(cos^(4)theta)/(b)=(1)/(a+b), then which one of ...

    Text Solution

    |

  19. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  20. If sinA sinB sinC+cosAcosB=1, then the value of sinC is

    Text Solution

    |