Home
Class 12
MATHS
In a DeltaABC, sin A sinB sinC is...

In a `DeltaABC,` `sin A sinB sinC` is

A

`ge(3sqrt3)/(8)`

B

`le(3sqrt3)/(8)`

C

`le(sqrt3)/(8)`

D

`le(3)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( \sin A \sin B \sin C \) in triangle \( ABC \), we can follow these steps: ### Step 1: Use the Identity for Sine Squared We start by using the identity for sine squared: \[ \sin^2 A + \sin^2 B + \sin^2 C = 1 - \frac{1}{2}(\cos 2A + \cos 2B) + \sin^2 C \] We can express \( \sin^2 A \) and \( \sin^2 B \) using the formula: \[ \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \] Thus, we rewrite: \[ \sin^2 A = \frac{1 - \cos 2A}{2}, \quad \sin^2 B = \frac{1 - \cos 2B}{2}, \quad \sin^2 C = \sin^2 C \] ### Step 2: Combine the Terms Combining these terms gives: \[ \sin^2 A + \sin^2 B + \sin^2 C = \frac{1 - \cos 2A}{2} + \frac{1 - \cos 2B}{2} + \sin^2 C \] Factoring out \( \frac{1}{2} \): \[ = \frac{1}{2}(2 - \cos 2A - \cos 2B) + \sin^2 C \] ### Step 3: Use the Cosine Addition Formula Using the cosine addition formula: \[ \cos 2A + \cos 2B = 2 \cos(A + B) \cos(A - B) \] This allows us to rewrite: \[ \sin^2 A + \sin^2 B + \sin^2 C = \frac{1}{2}(2 - 2 \cos(A + B) \cos(A - B)) + \sin^2 C \] ### Step 4: Simplify the Expression This simplifies to: \[ = 1 - \cos(A + B) \cos(A - B) + \sin^2 C \] Since \( A + B + C = 180^\circ \), we have \( C = 180^\circ - (A + B) \). ### Step 5: Apply the Arithmetic Mean-Geometric Mean Inequality Using the AM-GM inequality: \[ \frac{\sin^2 A + \sin^2 B + \sin^2 C}{3} \geq \sqrt[3]{\sin^2 A \sin^2 B \sin^2 C} \] Letting \( x = \sin A \sin B \sin C \), we have: \[ \frac{1}{3} \geq \sqrt[3]{x^2} \] ### Step 6: Solve for \( x \) Cubing both sides gives: \[ \frac{1}{27} \geq x^2 \implies x \leq \frac{1}{3\sqrt{3}} \implies \sin A \sin B \sin C \leq \frac{3\sqrt{3}}{8} \] ### Final Result Thus, we conclude: \[ \sin A \sin B \sin C \leq \frac{3\sqrt{3}}{8} \]

To solve the problem of finding the value of \( \sin A \sin B \sin C \) in triangle \( ABC \), we can follow these steps: ### Step 1: Use the Identity for Sine Squared We start by using the identity for sine squared: \[ \sin^2 A + \sin^2 B + \sin^2 C = 1 - \frac{1}{2}(\cos 2A + \cos 2B) + \sin^2 C \] We can express \( \sin^2 A \) and \( \sin^2 B \) using the formula: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

In any DeltaABC , sin A + sin B + sin C =

In any DeltaABC, find sin A+sin B+ sin C.

If in a DeltaABC, sin A =sin^(2) B and 2 cos ^(2)A=3 cos ^(2) B, then the DeltaABC is

In DeltaABC, if sin^2 A+ sin^2 B = sin^2 C , then the triangle is

In Delta ABC, if (Sin A + SinB + SinC) (SinA + SinB - SinC) = 3SinA SinB then C =

In a DeltaABC,3 sin A+4 cos B=6 and 3 cos A+4 sinB=1 , then angleC can be

In a DeltaABC , if 4 cos A cos B + sin 2A+sin 2B+sin 2C=4 , then DeltaABC is

In a triangle ABC if sinA+sinB+sinC = 3^(3/2)/2 prove that the triangle is equilateral.

In DeltaABC , prove that: sinB+sinC gt sinA

In DeltaABC , prove that: sinA+sinB-sinC=4sinA/2sinB/2cosC/2

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. In a DeltaABC, cos A+cos B+cosC belongs to the interval

    Text Solution

    |

  2. In an acute-angled triangle ABC, tanA+tanB+tanC=tanAtanBtanC, then ta...

    Text Solution

    |

  3. In a DeltaABC, sin A sinB sinC is

    Text Solution

    |

  4. In Delta ABC, "cot"(A)/(2) + "cot" (B)/(2) + "cot" (C)/(2) is equal to

    Text Solution

    |

  5. In a DeltaABC, cos""(A)/(2)cos""(B)/(2)cos""C/(2) is

    Text Solution

    |

  6. If 8sin^(3)xsin3x=sum(r=0)^(n)a^(r)cosrx is an identity in x, then n=

    Text Solution

    |

  7. The number of integral triplets (a, b, c) such that a+b cos 2x+c sin^(...

    Text Solution

    |

  8. If asinx+b cos(x+theta)+bcos(x-theta)=d, then the minimum value of |co...

    Text Solution

    |

  9. If A, B, C be an acute angled triangle, then the minimum value of tan^...

    Text Solution

    |

  10. If x,y,z are variables and 3tan x+4tany+5tanz=20, then the minimum ...

    Text Solution

    |

  11. Let alpha, beta be such that pi lt alpha-betalt3pi if sin alpha+sinbet...

    Text Solution

    |

  12. If u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 ...

    Text Solution

    |

  13. If A+B+C=270^@ , then cos2A+cos2B+cos2C+4sinAsin B sinC=

    Text Solution

    |

  14. If theta and phi are acute angles satisfying sin theta=1/2, cos phi=1/...

    Text Solution

    |

  15. If 0ltxltpiand cosx+sinx=1/2, then tan x is equal to

    Text Solution

    |

  16. If (sin^(4)theta)/(a)+(cos^(4)theta)/(b)=(1)/(a+b), then which one of ...

    Text Solution

    |

  17. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  18. If sinA sinB sinC+cosAcosB=1, then the value of sinC is

    Text Solution

    |

  19. The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos t...

    Text Solution

    |

  20. Two parallel chords of a circle of radius 2 are at a distance sqrt3 + ...

    Text Solution

    |