Home
Class 12
MATHS
In a DeltaABC, cos""(A)/(2)cos""(B)/(2)c...

In `a DeltaABC, cos""(A)/(2)cos""(B)/(2)cos""C/(2)` is

A

`le(3sqrt3)/(16)`

B

`le(3sqrt3)/(8)`

C

`le(3sqrt3)/(32)`

D

`(3sqrt3)/(64)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of the expression \( \frac{\cos(A/2) \cos(B/2) \cos(C/2)}{1} \) in triangle \( ABC \). ### Step-by-Step Solution: 1. **Understanding the Property of Cosines in a Triangle:** In any triangle \( ABC \), the sum of the cosines of the angles is given by the inequality: \[ \cos A + \cos B + \cos C \leq \frac{3}{2} \] 2. **Adding 1 to Both Sides:** If we add 1 to both sides of the inequality, we have: \[ 1 + \cos A + 1 + \cos B + 1 + \cos C \leq \frac{3}{2} + 3 \] Simplifying this gives: \[ 3 + \cos A + \cos B + \cos C \leq \frac{9}{2} \] 3. **Expressing in Terms of Half-Angle Cosines:** We can express \( 1 + \cos A \) as: \[ 1 + \cos A = 2 \cos^2\left(\frac{A}{2}\right) \] Similarly, for \( B \) and \( C \): \[ 1 + \cos B = 2 \cos^2\left(\frac{B}{2}\right) \] \[ 1 + \cos C = 2 \cos^2\left(\frac{C}{2}\right) \] 4. **Substituting Back into the Inequality:** Substituting these into our inequality gives: \[ 2 \cos^2\left(\frac{A}{2}\right) + 2 \cos^2\left(\frac{B}{2}\right) + 2 \cos^2\left(\frac{C}{2}\right) \leq \frac{9}{2} \] Dividing the entire inequality by 2: \[ \cos^2\left(\frac{A}{2}\right) + \cos^2\left(\frac{B}{2}\right) + \cos^2\left(\frac{C}{2}\right) \leq \frac{9}{4} \] 5. **Applying the AM-GM Inequality:** By the Arithmetic Mean-Geometric Mean (AM-GM) inequality: \[ \frac{\cos^2\left(\frac{A}{2}\right) + \cos^2\left(\frac{B}{2}\right) + \cos^2\left(\frac{C}{2}\right)}{3} \geq \sqrt[3]{\cos^2\left(\frac{A}{2}\right) \cos^2\left(\frac{B}{2}\right) \cos^2\left(\frac{C}{2}\right)} \] Thus, we have: \[ \frac{9}{4} \geq 3 \sqrt[3]{\cos^2\left(\frac{A}{2}\right) \cos^2\left(\frac{B}{2}\right) \cos^2\left(\frac{C}{2}\right)} \] 6. **Finding the Upper Bound:** Rearranging gives: \[ \cos^2\left(\frac{A}{2}\right) \cos^2\left(\frac{B}{2}\right) \cos^2\left(\frac{C}{2}\right) \leq \left(\frac{3}{4}\right)^3 = \frac{27}{64} \] Therefore, taking the square root: \[ \cos\left(\frac{A}{2}\right) \cos\left(\frac{B}{2}\right) \cos\left(\frac{C}{2}\right) \leq \frac{3\sqrt{3}}{8} \] ### Conclusion: Thus, the expression \( \cos\left(\frac{A}{2}\right) \cos\left(\frac{B}{2}\right) \cos\left(\frac{C}{2}\right) \) is bounded above by \( \frac{3\sqrt{3}}{8} \).

To solve the problem, we need to determine the value of the expression \( \frac{\cos(A/2) \cos(B/2) \cos(C/2)}{1} \) in triangle \( ABC \). ### Step-by-Step Solution: 1. **Understanding the Property of Cosines in a Triangle:** In any triangle \( ABC \), the sum of the cosines of the angles is given by the inequality: \[ \cos A + \cos B + \cos C \leq \frac{3}{2} ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC, c cos ^(2)""(A)/(2) + a cos ^(2) ""(C ) /(2)=(3b)/(2), then a,b,c are in

In a DeltaABC, b cos^(2) (C/2) + c cos^(2) (B/2) is equal to

Show that : cos A+ cosB + cosC+ cos(A+B+C) = 4cos""(B+C)/(2)cos""(C+A)/(2)cos""(A+B)/(2) .

In a DeltaABC ,a cos^(2)(B/2)+bcos^(2)(A/2) is equal to

In a triangle Delta ABC , prove the following : 2 abc cos.(A)/(2) cos.(B)/(2) cos.(C )/(2) = (a+b+c)Delta

In a DeltaABC , sum (b + c) cos A=

In a triangle ABC cos^(2)A/2+cos^(2)B/2+cos^(2)C/2=

In a DeltaABC , a(cos^(2)B+cos^(2)C)+cosA( c cosC+bcosB)=

In triangle ABC, prove that cos(A/2)+cos(B/2)+cos(C/2)=4cos(pi-A)/4cos(pi-B)/4cos(pi-C)/4

In any DeltaABC , a cos A +b cos B + c cos C =

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. In a DeltaABC, sin A sinB sinC is

    Text Solution

    |

  2. In Delta ABC, "cot"(A)/(2) + "cot" (B)/(2) + "cot" (C)/(2) is equal to

    Text Solution

    |

  3. In a DeltaABC, cos""(A)/(2)cos""(B)/(2)cos""C/(2) is

    Text Solution

    |

  4. If 8sin^(3)xsin3x=sum(r=0)^(n)a^(r)cosrx is an identity in x, then n=

    Text Solution

    |

  5. The number of integral triplets (a, b, c) such that a+b cos 2x+c sin^(...

    Text Solution

    |

  6. If asinx+b cos(x+theta)+bcos(x-theta)=d, then the minimum value of |co...

    Text Solution

    |

  7. If A, B, C be an acute angled triangle, then the minimum value of tan^...

    Text Solution

    |

  8. If x,y,z are variables and 3tan x+4tany+5tanz=20, then the minimum ...

    Text Solution

    |

  9. Let alpha, beta be such that pi lt alpha-betalt3pi if sin alpha+sinbet...

    Text Solution

    |

  10. If u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 ...

    Text Solution

    |

  11. If A+B+C=270^@ , then cos2A+cos2B+cos2C+4sinAsin B sinC=

    Text Solution

    |

  12. If theta and phi are acute angles satisfying sin theta=1/2, cos phi=1/...

    Text Solution

    |

  13. If 0ltxltpiand cosx+sinx=1/2, then tan x is equal to

    Text Solution

    |

  14. If (sin^(4)theta)/(a)+(cos^(4)theta)/(b)=(1)/(a+b), then which one of ...

    Text Solution

    |

  15. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  16. If sinA sinB sinC+cosAcosB=1, then the value of sinC is

    Text Solution

    |

  17. The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos t...

    Text Solution

    |

  18. Two parallel chords of a circle of radius 2 are at a distance sqrt3 + ...

    Text Solution

    |

  19. The positive integer value of n gt 3 satisfying the equation (1)/(sin...

    Text Solution

    |

  20. Let varphi,phi in [0,2pi] be such that 2costheta(1-sinphi)=sin^2theta(...

    Text Solution

    |