Home
Class 12
MATHS
If 8sin^(3)xsin3x=sum(r=0)^(n)a^(r)cosrx...

If `8sin^(3)xsin3x=sum_(r=0)^(n)a^(r)cosrx` is an identity in x, then n=

A

3

B

4

C

6

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the value of \( n \) in the identity: \[ 8 \sin^3 x \sin 3x = \sum_{r=0}^{n} a^r \cos rx \] ### Step 1: Simplify the Left-Hand Side We start with the left-hand side: \[ 8 \sin^3 x \sin 3x \] Using the identity for \( \sin 3x \): \[ \sin 3x = 3 \sin x - 4 \sin^3 x \] We can express \( \sin^3 x \) in terms of \( \sin 3x \): \[ 8 \sin^3 x \sin 3x = 8 \sin^3 x (3 \sin x - 4 \sin^3 x) \] Distributing \( 8 \sin^3 x \): \[ = 24 \sin^4 x - 32 \sin^6 x \] ### Step 2: Factor the Expression We can factor out \( 8 \sin^4 x \): \[ = 8 \sin^4 x (3 - 4 \sin^2 x) \] ### Step 3: Use the Identity for Sine Products Now, we can use the product-to-sum identities. We rewrite \( \sin^4 x \) as: \[ \sin^4 x = \left( \frac{1 - \cos 2x}{2} \right)^2 = \frac{1 - 2\cos 2x + \cos^2 2x}{4} \] And we know that: \[ \cos^2 2x = \frac{1 + \cos 4x}{2} \] Thus, substituting back, we get: \[ \sin^4 x = \frac{1 - 2\cos 2x + \frac{1 + \cos 4x}{2}}{4} \] ### Step 4: Expand and Combine Terms Now we can substitute this back into our expression and simplify. However, for our purpose, we need to focus on the maximum cosine term that arises from the left-hand side. ### Step 5: Identify the Maximum Cosine Term The maximum cosine term from \( 8 \sin^4 x (3 - 4 \sin^2 x) \) will be determined by the highest degree of \( x \) in the expansion. The maximum degree of \( \cos \) that can arise from \( \sin^4 x \) and \( \sin^2 x \) will yield terms involving \( \cos 0x, \cos 2x, \cos 4x, \) and \( \cos 6x \). ### Step 6: Compare with Right-Hand Side The right-hand side is given by: \[ \sum_{r=0}^{n} a^r \cos rx \] The highest term in this sum is \( \cos nx \). For the identity to hold, the maximum term from the left-hand side must match the maximum term from the right-hand side. ### Step 7: Set the Maximum Terms Equal From our analysis, the maximum term from the left-hand side is \( \cos 6x \). Therefore, we set: \[ n = 6 \] ### Conclusion Thus, the value of \( n \) is: \[ \boxed{6} \]

To solve the given problem, we need to find the value of \( n \) in the identity: \[ 8 \sin^3 x \sin 3x = \sum_{r=0}^{n} a^r \cos rx \] ### Step 1: Simplify the Left-Hand Side ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If 8 sin^3x sin3x=sum_(r=0)^n a cosrx is an identity, then n=

cos^3x.sin2x=sum_(m=1)^n(a_m)sin mx is an identity in x.

Suppose sin^3xsin3x=sum_(m=0)^n C_mcosm x is an identity in x , where C_0,C_1 ,C_n are constants and C_n!=0, the the value of n is ________

If cos^3xsin2x=sum_(r=0)^n a_xsin(r x),AAx in R then

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

Find the sum sum_(r=0)^n^(n+r)C_r .

Find the sum sum_(r=0)^n^(n+r)C_r .

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

If ninN,ngt4 and (1-x^(3))^(n)=sum_(r=0)^(n)a_(r)x^(r)(1-x)^(3n-2r) , then sum_(r=0)^(n)a_(r)=lambda^(n) , find lambda .

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. In Delta ABC, "cot"(A)/(2) + "cot" (B)/(2) + "cot" (C)/(2) is equal to

    Text Solution

    |

  2. In a DeltaABC, cos""(A)/(2)cos""(B)/(2)cos""C/(2) is

    Text Solution

    |

  3. If 8sin^(3)xsin3x=sum(r=0)^(n)a^(r)cosrx is an identity in x, then n=

    Text Solution

    |

  4. The number of integral triplets (a, b, c) such that a+b cos 2x+c sin^(...

    Text Solution

    |

  5. If asinx+b cos(x+theta)+bcos(x-theta)=d, then the minimum value of |co...

    Text Solution

    |

  6. If A, B, C be an acute angled triangle, then the minimum value of tan^...

    Text Solution

    |

  7. If x,y,z are variables and 3tan x+4tany+5tanz=20, then the minimum ...

    Text Solution

    |

  8. Let alpha, beta be such that pi lt alpha-betalt3pi if sin alpha+sinbet...

    Text Solution

    |

  9. If u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 ...

    Text Solution

    |

  10. If A+B+C=270^@ , then cos2A+cos2B+cos2C+4sinAsin B sinC=

    Text Solution

    |

  11. If theta and phi are acute angles satisfying sin theta=1/2, cos phi=1/...

    Text Solution

    |

  12. If 0ltxltpiand cosx+sinx=1/2, then tan x is equal to

    Text Solution

    |

  13. If (sin^(4)theta)/(a)+(cos^(4)theta)/(b)=(1)/(a+b), then which one of ...

    Text Solution

    |

  14. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  15. If sinA sinB sinC+cosAcosB=1, then the value of sinC is

    Text Solution

    |

  16. The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos t...

    Text Solution

    |

  17. Two parallel chords of a circle of radius 2 are at a distance sqrt3 + ...

    Text Solution

    |

  18. The positive integer value of n gt 3 satisfying the equation (1)/(sin...

    Text Solution

    |

  19. Let varphi,phi in [0,2pi] be such that 2costheta(1-sinphi)=sin^2theta(...

    Text Solution

    |

  20. Let f: (-1, 1) to R be such that f(cos 4theta) = (2)/(2-sec^(2)theta) ...

    Text Solution

    |