Home
Class 12
MATHS
If A, B, C be an acute angled triangle, ...

If A, B, C be an acute angled triangle, then the minimum value of `tan^(4)A+tan^(4)B+tan^(4)C` will be

A

729

B

27

C

`81sqrt3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( \tan^4 A + \tan^4 B + \tan^4 C \) for an acute-angled triangle \( ABC \), we can use the properties of symmetric functions and inequalities. Here’s a step-by-step solution: ### Step 1: Use the AM-GM Inequality We can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality. For three non-negative numbers \( x_1, x_2, x_3 \): \[ \frac{x_1 + x_2 + x_3}{3} \geq \sqrt[3]{x_1 x_2 x_3} \] In our case, let \( x_1 = \tan^4 A \), \( x_2 = \tan^4 B \), and \( x_3 = \tan^4 C \). ### Step 2: Set Up the Inequality Applying AM-GM gives us: \[ \frac{\tan^4 A + \tan^4 B + \tan^4 C}{3} \geq \sqrt[3]{\tan^4 A \tan^4 B \tan^4 C} \] This implies: \[ \tan^4 A + \tan^4 B + \tan^4 C \geq 3 \sqrt[3]{\tan^4 A \tan^4 B \tan^4 C} \] ### Step 3: Use the Condition for Angles in a Triangle Since \( A + B + C = 180^\circ \) and \( A, B, C \) are acute angles, we can use the fact that \( \tan A + \tan B + \tan C \) is minimized when \( A = B = C = 60^\circ \). ### Step 4: Calculate \( \tan 60^\circ \) We know: \[ \tan 60^\circ = \sqrt{3} \] Thus: \[ \tan^4 60^\circ = (\sqrt{3})^4 = 9 \] ### Step 5: Substitute Back into the Expression If \( A = B = C = 60^\circ \): \[ \tan^4 A + \tan^4 B + \tan^4 C = 9 + 9 + 9 = 27 \] ### Conclusion Therefore, the minimum value of \( \tan^4 A + \tan^4 B + \tan^4 C \) is: \[ \boxed{27} \]

To find the minimum value of \( \tan^4 A + \tan^4 B + \tan^4 C \) for an acute-angled triangle \( ABC \), we can use the properties of symmetric functions and inequalities. Here’s a step-by-step solution: ### Step 1: Use the AM-GM Inequality We can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality. For three non-negative numbers \( x_1, x_2, x_3 \): \[ \frac{x_1 + x_2 + x_3}{3} \geq \sqrt[3]{x_1 x_2 x_3} \] In our case, let \( x_1 = \tan^4 A \), \( x_2 = \tan^4 B \), and \( x_3 = \tan^4 C \). ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If A,B,C are angles of a triangle ,then the minimum value of tan^(2)(A/2)+tan^(2)(B/2)+tan^(2)(C/2) , is

In acute angled triangle ABC prove that tan ^(2)A+tan^(2)B+tan^(2)Cge9 .

Statement-1: In an acute angled triangle minimum value of tan alpha + tanbeta + tan gamma is 3sqrt(3) . And Statement-2: If a,b,c are three positive real numbers then (a+b+c)/3 ge sqrt(abc) into in a triangleABC , tanA+ tanB + tanC= tanA. tanB.tanC

If A, B and C are angles of a triangle such that angleA is obtuse, then show tan B tan C lt 1.

In a right - angled triangle , it is given that A is an acute angle and tan A=5/12 sin A

In a right - angled triangle , it is given that A is an acute angle and tan A=5/12 cos A

If a ,\ b ,\ c >0 such that a+b+c=a b c , find the value of tan^(-1)a+tan^(-1)b+tan^(-1)c .

If A,B,C are angles of a triangle, prove that "tan "(B+C)/(2)="cot"(A)/(2) .

In a triangle tan A+ tan B + tan C=6 and tan A tan B= 2, then the values of tan A, tan B and tan C are

If A ,\ B ,\ C are the interior angles of a triangle A B C , prove that tan(B+C)/2=cotA/2

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. The number of integral triplets (a, b, c) such that a+b cos 2x+c sin^(...

    Text Solution

    |

  2. If asinx+b cos(x+theta)+bcos(x-theta)=d, then the minimum value of |co...

    Text Solution

    |

  3. If A, B, C be an acute angled triangle, then the minimum value of tan^...

    Text Solution

    |

  4. If x,y,z are variables and 3tan x+4tany+5tanz=20, then the minimum ...

    Text Solution

    |

  5. Let alpha, beta be such that pi lt alpha-betalt3pi if sin alpha+sinbet...

    Text Solution

    |

  6. If u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 ...

    Text Solution

    |

  7. If A+B+C=270^@ , then cos2A+cos2B+cos2C+4sinAsin B sinC=

    Text Solution

    |

  8. If theta and phi are acute angles satisfying sin theta=1/2, cos phi=1/...

    Text Solution

    |

  9. If 0ltxltpiand cosx+sinx=1/2, then tan x is equal to

    Text Solution

    |

  10. If (sin^(4)theta)/(a)+(cos^(4)theta)/(b)=(1)/(a+b), then which one of ...

    Text Solution

    |

  11. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  12. If sinA sinB sinC+cosAcosB=1, then the value of sinC is

    Text Solution

    |

  13. The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos t...

    Text Solution

    |

  14. Two parallel chords of a circle of radius 2 are at a distance sqrt3 + ...

    Text Solution

    |

  15. The positive integer value of n gt 3 satisfying the equation (1)/(sin...

    Text Solution

    |

  16. Let varphi,phi in [0,2pi] be such that 2costheta(1-sinphi)=sin^2theta(...

    Text Solution

    |

  17. Let f: (-1, 1) to R be such that f(cos 4theta) = (2)/(2-sec^(2)theta) ...

    Text Solution

    |

  18. Suppose theta and phi(ne 0) are such that sec (theta+phi), sec theta a...

    Text Solution

    |

  19. The value of sec 40^(@)+sec 80^(@)+sec 160^(@) will be

    Text Solution

    |

  20. If theta=(2pi)/(2009), then costhetacos 2thetacos3theta... cos1004thet...

    Text Solution

    |