Home
Class 12
MATHS
If 0ltxltpiand cosx+sinx=1/2, then tan x...

If `0ltxltpiand cosx+sinx=1/2,` then tan x is equal to

A

`(1-sqrt7)/(4)`

B

`(4-sqrt7)/(3)`

C

`(-(4+sqrt7))/(3)`

D

`(sqrt7+1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \cos x + \sin x = \frac{1}{2} \) and we need to find \( \tan x \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ \cos x + \sin x = \frac{1}{2} \] ### Step 2: Divide the entire equation by \( \cos x \) This gives us: \[ 1 + \frac{\sin x}{\cos x} = \frac{1}{2 \cos x} \] This can be rewritten as: \[ 1 + \tan x = \frac{1}{2 \cos x} \] ### Step 3: Rewrite the equation in terms of \( \tan x \) Let’s rearrange the equation: \[ \tan x = \frac{1}{2 \cos x} - 1 \] ### Step 4: Square both sides To eliminate the tangent, we square both sides: \[ (1 + \tan x)^2 = \left(\frac{1}{2 \cos x}\right)^2 \] Expanding the left side: \[ 1 + 2\tan x + \tan^2 x = \frac{1}{4 \cos^2 x} \] ### Step 5: Use the identity \( \sec^2 x = 1 + \tan^2 x \) We know that \( \sec^2 x = 1 + \tan^2 x \), so we can substitute: \[ 1 + 2\tan x + \tan^2 x = \frac{1}{4 \cos^2 x} \] This implies: \[ 1 + 2\tan x + (1 + \tan^2 x) = \frac{1}{4 \cos^2 x} \] ### Step 6: Rearranging the equation Now we can simplify: \[ 2 + 2\tan x + \tan^2 x = \frac{1}{4 \cos^2 x} \] ### Step 7: Substitute \( \sec^2 x \) Using \( \sec^2 x = 1 + \tan^2 x \): \[ 2 + 2\tan x + \tan^2 x = \frac{1 + \tan^2 x}{4} \] ### Step 8: Clear the fraction by multiplying through by 4 This gives: \[ 8 + 8\tan x + 4\tan^2 x = 1 + \tan^2 x \] ### Step 9: Rearranging to form a quadratic equation Rearranging gives: \[ 3\tan^2 x + 8\tan x + 7 = 0 \] ### Step 10: Solve the quadratic equation using the quadratic formula Using the quadratic formula \( \tan x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 3, b = 8, c = 7 \): \[ \tan x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 3 \cdot 7}}{2 \cdot 3} \] Calculating the discriminant: \[ \tan x = \frac{-8 \pm \sqrt{64 - 84}}{6} \] \[ \tan x = \frac{-8 \pm \sqrt{-20}}{6} \] ### Step 11: Simplifying the result Since we have a negative discriminant, we can express it as: \[ \tan x = \frac{-8 \pm 2i\sqrt{5}}{6} \] \[ \tan x = \frac{-4 \pm i\sqrt{5}}{3} \] ### Final Result Since \( x \) is in the range \( (0, \pi) \), we can conclude: \[ \tan x = \frac{-4 + \sqrt{7}}{3} \quad \text{(valid solution)} \]

To solve the problem where \( \cos x + \sin x = \frac{1}{2} \) and we need to find \( \tan x \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ \cos x + \sin x = \frac{1}{2} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If 0 < x < pi and cosx + sinx = 1/2 then tanx =

If sinx+cosx=1/5,0lexlepi, then tan x is equal to

If 3f(cosx)+2f(sinx)=5x , then f^(')(cosx) is equal to (where f^(') denotes derivative with respect to x ) (A) −1/(cosx) (B) 1/(cosx) (C) -1/(sinx) (D) 1/(sinx)

int_(0)^(pi//2) cosx\ e^(sinx)\ dx is equal to

Maximum value of cosx (sinx +cos x) is equal to :

int(x+sinx)/(1+cosx) dx is equal to

Number of solution of sinx cosx-3cosx+4sinx-13 gt 0 in [0,2pi] is equal to

If y=tan^(-1)((sinx+cosx)/(cosx-sinx)) , then (dy)/(dx) is equal to (a) 1/2 (b) 0 (c) 1 (d) none of these

If sinx+cosx=sqrt7/2 where x in[0,pi/4] then tan(x/2) is equal to

if y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. The number of integral triplets (a, b, c) such that a+b cos 2x+c sin^(...

    Text Solution

    |

  2. If asinx+b cos(x+theta)+bcos(x-theta)=d, then the minimum value of |co...

    Text Solution

    |

  3. If A, B, C be an acute angled triangle, then the minimum value of tan^...

    Text Solution

    |

  4. If x,y,z are variables and 3tan x+4tany+5tanz=20, then the minimum ...

    Text Solution

    |

  5. Let alpha, beta be such that pi lt alpha-betalt3pi if sin alpha+sinbet...

    Text Solution

    |

  6. If u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 ...

    Text Solution

    |

  7. If A+B+C=270^@ , then cos2A+cos2B+cos2C+4sinAsin B sinC=

    Text Solution

    |

  8. If theta and phi are acute angles satisfying sin theta=1/2, cos phi=1/...

    Text Solution

    |

  9. If 0ltxltpiand cosx+sinx=1/2, then tan x is equal to

    Text Solution

    |

  10. If (sin^(4)theta)/(a)+(cos^(4)theta)/(b)=(1)/(a+b), then which one of ...

    Text Solution

    |

  11. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  12. If sinA sinB sinC+cosAcosB=1, then the value of sinC is

    Text Solution

    |

  13. The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos t...

    Text Solution

    |

  14. Two parallel chords of a circle of radius 2 are at a distance sqrt3 + ...

    Text Solution

    |

  15. The positive integer value of n gt 3 satisfying the equation (1)/(sin...

    Text Solution

    |

  16. Let varphi,phi in [0,2pi] be such that 2costheta(1-sinphi)=sin^2theta(...

    Text Solution

    |

  17. Let f: (-1, 1) to R be such that f(cos 4theta) = (2)/(2-sec^(2)theta) ...

    Text Solution

    |

  18. Suppose theta and phi(ne 0) are such that sec (theta+phi), sec theta a...

    Text Solution

    |

  19. The value of sec 40^(@)+sec 80^(@)+sec 160^(@) will be

    Text Solution

    |

  20. If theta=(2pi)/(2009), then costhetacos 2thetacos3theta... cos1004thet...

    Text Solution

    |