Home
Class 12
MATHS
If theta=(2pi)/(2009), then costhetacos ...

If `theta=(2pi)/(2009), then costhetacos 2thetacos3theta... cos1004theta` is

A

0

B

`(1)/(2^(2008))`

C

`(1)/(2^(1004))`

D

`-(1)/(2^(1004))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the product \( P = \cos \theta \cos 2\theta \cos 3\theta \ldots \cos 1004\theta \) where \( \theta = \frac{2\pi}{2009} \). ### Step-by-Step Solution: 1. **Define the Product:** Let \( P = \cos \theta \cos 2\theta \cos 3\theta \ldots \cos 1004\theta \). 2. **Introduce a Sine Product:** Define another product \( Q = \sin \theta \sin 2\theta \sin 3\theta \ldots \sin 1004\theta \). 3. **Multiply \( P \) and \( Q \):** Consider the product \( PQ = (\cos \theta \sin \theta)(\cos 2\theta \sin 2\theta)(\cos 3\theta \sin 3\theta) \ldots (\cos 1004\theta \sin 1004\theta) \). 4. **Use the Identity:** Recall the identity \( 2 \sin x \cos x = \sin(2x) \). Thus, we can rewrite our product: \[ PQ = \frac{1}{2^{1004}} \left( \sin(2\theta) \sin(4\theta) \sin(6\theta) \ldots \sin(2008\theta) \right) \] 5. **Evaluate the Sine Terms:** Since \( \theta = \frac{2\pi}{2009} \), we have: \[ 2008\theta = 2008 \cdot \frac{2\pi}{2009} = \frac{4016\pi}{2009} \] The sine function has a period of \( 2\pi \), so we can reduce \( 2008\theta \) modulo \( 2\pi \): \[ 2008\theta = 2\pi - \frac{2\pi}{2009} = 2\pi(1 - \frac{1}{2009}) \] Thus, \( \sin(2008\theta) = \sin(2\pi - \frac{2\pi}{2009}) = \sin(\frac{2\pi}{2009} ) = \sin(\theta) \). 6. **Observe the Terms:** The terms \( \sin(2\theta), \sin(4\theta), \ldots, \sin(2008\theta) \) will yield \( 0 \) at multiples of \( \pi \). Since \( \sin(k\theta) \) will be \( 0 \) for \( k = 2009 \), we find that \( PQ = 0 \). 7. **Conclusion:** Since \( PQ = 0 \), it follows that either \( P = 0 \) or \( Q = 0 \). However, since \( \sin k\theta \) will be zero for some \( k \), we conclude that \( P \) must also be \( 0 \). ### Final Answer: Thus, the value of \( P = \cos \theta \cos 2\theta \cos 3\theta \ldots \cos 1004\theta \) is **0**.

To solve the problem, we need to evaluate the product \( P = \cos \theta \cos 2\theta \cos 3\theta \ldots \cos 1004\theta \) where \( \theta = \frac{2\pi}{2009} \). ### Step-by-Step Solution: 1. **Define the Product:** Let \( P = \cos \theta \cos 2\theta \cos 3\theta \ldots \cos 1004\theta \). 2. **Introduce a Sine Product:** ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|13 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If theta=(pi)/(7), show that cos theta cos 2theta cos 3 theta = (1)/(8) .

If (2^n+1)theta=pi then 2^n costheta cos2theta cos2^2 theta .......cos 2^(n-1) theta=

If theta=pi/(2^n+1) , prove that: 2^ncosthetacos2thetacos2^2thetacos2^(n-1)theta=1.

If theta=pi/(2^n+1) , prove that: 2^ncosthetacos2thetacos2^2 cos2^(n-1)theta=1.

Solve: costhetacos2thetacos3theta=1/4 , where 0 lethetalex .

If f(theta)=|(cos^(2)theta ,cos theta sin theta, -sin theta),(cos theta sin theta, sin^(2)theta,cos theta),(sin theta,-cos theta,0)| then, f((pi)/(6))+f((pi)/(3))+f((pi)/(2))+f((2pi)/(3))+f((5pi)/(6))+f(pi)+……+f((53pi)/(6)) is equal to

Prove (cos 3theta+ 2 cos 5theta+ cos 7theta)/( cos theta+ 2 cos 3theta+ cos 5theta)= cos 2theta- sin 2theta tan 3theta .

Prove: tan^2thetacos^2theta=1-cos^2theta

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

Find the value of cos theta. cos 2theta. cos 2^(2)theta . cos 2^(3)theta"……." cos 2^(n-1) theta is

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC RATIOS AND IDENTITIES-Section I - Solved Mcqs
  1. The number of integral triplets (a, b, c) such that a+b cos 2x+c sin^(...

    Text Solution

    |

  2. If asinx+b cos(x+theta)+bcos(x-theta)=d, then the minimum value of |co...

    Text Solution

    |

  3. If A, B, C be an acute angled triangle, then the minimum value of tan^...

    Text Solution

    |

  4. If x,y,z are variables and 3tan x+4tany+5tanz=20, then the minimum ...

    Text Solution

    |

  5. Let alpha, beta be such that pi lt alpha-betalt3pi if sin alpha+sinbet...

    Text Solution

    |

  6. If u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 ...

    Text Solution

    |

  7. If A+B+C=270^@ , then cos2A+cos2B+cos2C+4sinAsin B sinC=

    Text Solution

    |

  8. If theta and phi are acute angles satisfying sin theta=1/2, cos phi=1/...

    Text Solution

    |

  9. If 0ltxltpiand cosx+sinx=1/2, then tan x is equal to

    Text Solution

    |

  10. If (sin^(4)theta)/(a)+(cos^(4)theta)/(b)=(1)/(a+b), then which one of ...

    Text Solution

    |

  11. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  12. If sinA sinB sinC+cosAcosB=1, then the value of sinC is

    Text Solution

    |

  13. The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos t...

    Text Solution

    |

  14. Two parallel chords of a circle of radius 2 are at a distance sqrt3 + ...

    Text Solution

    |

  15. The positive integer value of n gt 3 satisfying the equation (1)/(sin...

    Text Solution

    |

  16. Let varphi,phi in [0,2pi] be such that 2costheta(1-sinphi)=sin^2theta(...

    Text Solution

    |

  17. Let f: (-1, 1) to R be such that f(cos 4theta) = (2)/(2-sec^(2)theta) ...

    Text Solution

    |

  18. Suppose theta and phi(ne 0) are such that sec (theta+phi), sec theta a...

    Text Solution

    |

  19. The value of sec 40^(@)+sec 80^(@)+sec 160^(@) will be

    Text Solution

    |

  20. If theta=(2pi)/(2009), then costhetacos 2thetacos3theta... cos1004thet...

    Text Solution

    |