Home
Class 12
MATHS
Statement -1: sin52^(@)+sin78^(@)+sin50^...

Statement -1: `sin52^(@)+sin78^(@)+sin50^(@)=4cos26^(@)cos39^(@)cos25^(@)`
Statement-2: If `A+B+C=pi, then sinA+sin B+sinC=4cos""(A)/(2)cos""(B)/(2)cos""(C)/(2)`

A

Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement -1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
A

If `A+B+C=pi, then sinA+sinB+sinC`
`=2sin""(A+B)/(2)cos""(A-B)/(2)+2sin""(C)/(2)cos""(C)/(2)`
`=2cos""(C)/(2){cos""(A-B)/(2)+cos""(A+B)/(2)}=4cos""(A)/(2)cos""(B)/(2)cos""(C)/(2)`
So, statement-2 is true.
On replacing A by `52^(@),Bby78^(@)and C by 50^(@),` we obtain statement-1.
Hence, both the statements are true and statement-2 is a correct explanation for statement-1.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|106 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=180 , prove that: sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

If A+B+C=pi , prove that : sinA+sinB+sinC= 4cos, A/2 cos, B/2 cos, C/2

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

sin^2(A/2)+sin^2(B/2)-sin^2(C/2)=1-2cos(A/2)cos(B/2)sin(C/2)

Prove that sinA+sin2A+sin4A+sin5A=4 cos(A/2)cos((3A)/2)sin3A

If A+B+C=270^@ , then cos2A+cos2B+cos2C+4sinAsin B sinC=

If A + B + C = pi then prove that cos A + cos B + cos C = 1 + 4 sin(A/2) .sin(B/2).sin(C/2)

Prove that : (sin 2A+sin 2B + sin 2C)/(cos A + cos B + cos C-1) = 8 cos(A/2) cos( B/2) cos( C/2)

Prove that: (sin A+sin B)/(cos A+cos B)=tan((A+B)/2)

Prove that: (sin A-sin B)/(cos A+cos B)=tan((A-B)/2)