Home
Class 12
MATHS
Statement-1: For any value of thetane0, ...

Statement-1: For any value of `thetane0, lim_(ntooo)cos""(theta)/(2)cos""(theta)/(2^(2))cos""(theta)/(2^(3))...cos""(theta)/(2^(n))=(sintheta)/(theta)`
Statement-2: `cosAcos2Acos2^(2)A...cos2^(n-1)A=(sin2^(n)A)/(2^(n)sinA) and lim_(Ato0)(sinA)/(A)=1.`

A

Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement -1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
A

Clearly, two given statements are true and Statement-2 is a correct explanation for statement-1.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|106 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

sum_(n=1)^ootan(theta/(2^n))/(2^(n-1)cos(theta/(2^(n-1)))) is

cos2 theta*cos(theta/(2))-cos3 theta*cos((9theta)/2)=sin5 theta*sin((5theta)/(2))

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

(sin3theta)/(2cos2theta+1)=(1)/(2) if (n in Z)

If cos theta > sin theta > 0, then evaluate : int{log((1+sin2theta)/(1-sin2theta))^(cos^(2) theta)+log((cos2theta)/(1+sin2theta))} d theta

Prove that cos theta cos 2 theta cos 4 theta…. Cos 2 ^(n-1) theta = ( sin ( 2 ^(n) theta))/( 2 ^(n) (sin theta)) .

Statement I Pi_(r=1)^(n) (1+sec 2^(r)theta)=tan 2^(n)theta cot theta Statement II Pi_(r=1)^(n) cos (2^(r-1)theta)=(sin(2^(n)theta))/(2^(n)sin theta)

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

Evaluate the following limits : Lim_(theta to pi/2) (1-sin theta)/((pi/2-theta)cos theta)