Home
Class 12
MATHS
Statement-1: If tanA, tanB are the roots...

Statement-1: If `tanA, tanB` are the roots of the equation `x^(2)-ax-1=0,then sin^(2)(A+B)=(a^(2))/(1+a^(2))`
Statement-2: `sin^(2)(A+B)=(tan^(2)(A+B))/(1+tan^(2)(A+B))`

A

Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement -1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze both statements and verify their validity step by step. ### Step 1: Analyze Statement 1 **Statement 1:** If \( \tan A, \tan B \) are the roots of the equation \( x^2 - ax - 1 = 0 \), then \( \sin^2(A+B) = \frac{a^2}{1 + a^2} \). 1. **Identify the roots:** From the quadratic equation \( x^2 - ax - 1 = 0 \), we can identify the sum and product of the roots: - Sum of roots \( \tan A + \tan B = a \) - Product of roots \( \tan A \tan B = -1 \) ### Step 2: Use the tangent addition formula 2. **Tangent of sum formula:** We know that: \[ \tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Substituting the values we have: \[ \tan(A+B) = \frac{a}{1 - (-1)} = \frac{a}{2} \] ### Step 3: Calculate \( \sin^2(A+B) \) 3. **Relate \( \sin^2(A+B) \) to \( \tan(A+B) \):** \[ \sin^2(A+B) = \frac{\tan^2(A+B)}{1 + \tan^2(A+B)} \] Substituting \( \tan(A+B) = \frac{a}{2} \): \[ \tan^2(A+B) = \left(\frac{a}{2}\right)^2 = \frac{a^2}{4} \] Therefore, \[ \sin^2(A+B) = \frac{\frac{a^2}{4}}{1 + \frac{a^2}{4}} = \frac{\frac{a^2}{4}}{\frac{4 + a^2}{4}} = \frac{a^2}{4 + a^2} \] ### Step 4: Compare with Statement 1 4. **Check Statement 1:** We found that: \[ \sin^2(A+B) = \frac{a^2}{4 + a^2} \] This does not match with \( \frac{a^2}{1 + a^2} \). Hence, **Statement 1 is false**. ### Step 5: Analyze Statement 2 **Statement 2:** \( \sin^2(A+B) = \frac{\tan^2(A+B)}{1 + \tan^2(A+B)} \) 5. **Verification of Statement 2:** We have already derived that: \[ \sin^2(A+B) = \frac{\tan^2(A+B)}{1 + \tan^2(A+B)} \] This is a known trigonometric identity, and since we derived it correctly, **Statement 2 is true**. ### Conclusion - **Statement 1:** False - **Statement 2:** True ### Final Answer The correct option is that Statement 1 is false and Statement 2 is true. ---

To solve the given problem, we need to analyze both statements and verify their validity step by step. ### Step 1: Analyze Statement 1 **Statement 1:** If \( \tan A, \tan B \) are the roots of the equation \( x^2 - ax - 1 = 0 \), then \( \sin^2(A+B) = \frac{a^2}{1 + a^2} \). 1. **Identify the roots:** From the quadratic equation \( x^2 - ax - 1 = 0 \), we can identify the sum and product of the roots: - Sum of roots \( \tan A + \tan B = a \) - Product of roots \( \tan A \tan B = -1 \) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|106 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If tan A and tan B are the roots of the quadratic equation x^2-px + q =0 then value of sin^2(A+B)

If in a triangle ABC , tan A/2 and tan B/2 are the roots of the equation 6x^(2)-5x+1=0 , then

If a and b are roots of the equation x^2+a x+b=0 , then a+b= (a) 1 (b) 2 (c) -2 (d) -1

Given tan A and tan B are the roots of x^2-ax + b = 0 , The value of sin^2(A + B) is

If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 then evaluate 4sin^(2)(A+B)-7sin(A+B)*cos(A+B)+cos^(2)(A+B) .

If tanA\ "and" \ tanB are the roots of x^2-2x-1=0 , then sin^2(A+B) is (A) 1/(sqrt(2)) (B) sqrt(3)/2 (C) 1/2 (D) 0

Statement-1: If alpha,beta roots of the equation 18(tan^(-1)x)^(2)-9pi tan^(-1)x+pi^(2)=0 then alpha+beta =(4)/sqrt(3) Statement-2: sec^(2)cos^(-1)(1/4)+cosec^(2)sin^(-1)(1/5)=41

If tan prop &tan beta are the roots of the equation bx^2+ax-1=0,bcancel=0 and tan(prop+beta)=2 then a+2b+2 is equal to ....

If tan prop &tan beta are the roots of the equation bx^2+ax-1=0,bcancel=0 and tan(prop+beta)=2 then a+2b+2 is equal to ....

If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then x=