Home
Class 12
MATHS
Statement-1: if thetane2npi+(pi)/(2),n ...

Statement-1: if `thetane2npi+(pi)/(2),n inZ,` then
`(sec^(2)theta+tantheta)/(sec^(2)theta-tantheta)"lies between"1/3 and 3.`
Statement-2: If `x inR, then 1/3le(x^(2)-x+1)/(x^(2)+x+1)le3.`

A

Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement -1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
A

Let `y=(x^(2)-x+1)/(x^(2)+x+1).Then,`
`x^(2)(y-1)+x(y+1)+(y-1)=0`
`implies(y+1)^(2)-4(y-1)^(2)ge0" "[becausex inRthereforeDiscge0]`
`implies(3y-1)(y-3)le0`
`1/3leyle3`
`implies1/2le(x^(2)-x+1)/(x^(2)+x+1)le3"for all"x inR.`
We have,
`(sec^(2)theta+tantheta)/(sec^(2)theta-tantheta)=(tan^(2)theta+tantheta-1)/(tan^(2)theta-tantheta+1)`
Using statement-2, we have
`1/3le (tan^(2)theta+tantheta+1)/(tan^(2)theta-tantheta+1)le3"for all"theta(ne(2n+1)(pi)/(2)),n inZ`
`implies1/3le(sec^(2)theta+tantheta)/(sec^(2)theta-tantheta)le3"for all"theta ne2npi+-(pi)/(2)`
Hence, both the statements are true and statement-2 is a correct explanation for statement-1.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|106 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If y=(sec^(2)theta-tantheta)/(sec^(2)theta+tantheta)' then

Prove: ((1+cot^2theta)tantheta)/(sec^2theta)=cottheta

Solve 1le(3x^(2)-7x+8)/(x^(2)+1)le2 .

Prove that : sqrt((1-cos^(2)theta)sec^(2)theta)=tantheta

(tantheta+2)(2 tantheta+1) = 5 tantheta+ sec^(2)theta

|(x-3)/(x^(2)-4)|le 1.

Prove (tantheta+2)(2tantheta+1)=5tantheta+2sec^2theta.

Solve : (1)/(x^(2) +x) le(1)/(2x^(2) + 2x+3)

Prove that (1+sin2theta)/(1-sin2theta)=((1+tantheta)/(1-tantheta))^2

Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11 . Statement -2 :tan^(2)theta+sec^(2)theta=1=cot^(2)theta+cosec^(2)theta