Home
Class 12
MATHS
Statement I If 2 sin (theta/2)=sqrt(1+si...

Statement I If `2 sin (theta/2)=sqrt(1+sin theta)+sqrt(1-sin theta)` then `theta/2` lies between `2 n pi+pi/4` and `2 n pi + (3pi)/(4)`.
Statement II If `(pi)/(4) le 0 le (3pi)/(4)` then `sin. (theta)/(2) gt0`.

A

Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement -1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`2sin""(theta)/(2)=sqrt(1+sintheta)+sqrt(1-sintheta)`
`implies2sin""(theta)/(2)=sqrt((cos""(theta)/(2)+sin""(theta)/(2))^(2))+sqrt((cos""(theta)/(2)-sin""(theta)/(2))^(2))`
`implies2sin""(theta)/(2)=|cos""(theta)/(2)+sin""(theta)/(2)|+|cos""(theta)/(2)-sin""(theta)/(2)|`
`rArr "cos"(theta)/(2) + "sin"(theta)/(2)gt0 and "cos"(theta)/(2)-"sin"(theta)/(2) lt0`
`rArr sin ((pi)/(4)+(theta)/(2)) gt0 and cos ((theta)/(2)+(pi)/(4))lt0`
`rArr 2n pi +(pi)/(2)lt(0)/(2)+(pi)/(4)lt2n pi+pi`
`implies(8n+1)(pi)/(2)lt thetalt(8n+3)(pi)/(2)`
So, statement-1 is true.
Statement-2 is also true, but it is not a correct explanation for
Statement-1.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|189 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|106 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Statement-1: If 2sin""(theta)/(2)=sqrt(1+sintheta)+sqrt(1-sintheta,) then theta in((8pi+1)(pi)/(2),(8n+3)(pi)/(2)) Statement-2: If""(pi)/(4)lethetale(3pi)/(4),then sin""(theta)/(2)gt0.

Prove that : (1+ sin theta)/(1-sin theta) = tan^2 (pi/4 + theta/2)

Show that int_0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4

Show that int_0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

If (pi/4)< theta <(pi/2) ,then write the value of sqrt(1-sin2theta)

If sin(pi cos theta) = cos(pi sin theta) , then the value of cos(theta+- pi/4) is

If 0 leq theta leq pi and sin(theta/2)=sqrt(1+sintheta)-sqrt(1-sintheta) , then the possible value of tan theta is (a) 4/3 (b) 0 (c) -3/4 (d) -4/3

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

Statement-1: sin (pi+theta)=-sin theta Statement-2: sin(npi+theta)=(-1)^(n) sin theta , n in N .